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Abstract—Mapping and estimating the volumetric distribution
of cobalt-rich manganese crusts (Mn-crust) is a challenging
task that lies at the centre of deep-sea mineral prospecting.
Acoustic methods are effective and capable of in-situ continuous
measurements of Mn-crust thickness, providing much higher
spatial resolutions compared to traditional methods involving
sampling. However, processing acoustic signal in order to estimate
thickness values is difficult due to low signal to noise ratios. This
paper proposes a combination of image processing techniques in
addition to acoustic signal processing in order to improve the
accuracy of measurements. The advantage is the possibility of
using the physical properties of Mn-crust, such as local continuity
in order to recognize valid measurements. Testing the algorithm
on data collected from sea experiments demonstrate that the
reflected signals from the crust can be identified, resulting in
spatially continuous thickness estimates.

I. INTRODUCTION

Manganese crusts (Mn-crusts) are mineral deposits that can

cover several thousands of square kilometres of the seafloor in

regions that have been relatively free of tectonic activity and

sedimentation for tens of millions of years [1], [2]. Mn-crusts

are seen as a potential source of minerals such as cobalt and

tellurium by governments and industries internationally [3],

[4]. This drives interest in the development of methods to

quantitatively estimate their distribution and abundance.

Traditional methods of estimation, such as sampling from

Remotely Operated Vehicles (ROV) [4], dredges or core

drilling can obtain samples for detailed, pointwise measure-

ments of thickness and composition. However, they fail to

capture the continuous local variations of the deposits. This

limitation can be overcome by in situ measurement techniques,

which can significantly improve the spatial resolution of mea-

surements. The Institute of Industrial Science of the University

of Tokyo developed a high power parametric acoustic probe

which uses a highly focused pulse to make measurements

of the sub-surface structure of Mn-crusts from a close range

of 1 ∼ 2m. The probe has a vertical spatial resolution of

about 1.4 mm and penetrates approximately 30 cm below

the top-surface of the crust, and is actively controlled by a

double gimbal that ensures the acoustic waves always enter

the crusts normal to their surface [5]. This system is mounted

on the purpose built AUV, BOSS-A [6], together with a high-

resolution 3D visual mapping device.

Using the data acquired by the probe, the thickness of the

crust layer can be determined from the acoustic signals based

on the acoustic velocity. However, automated and reliable

extraction of this information in the presence of noise due

to scattering, multi-path reflections, local inclusions inside the

crust layer, fluctuating signal levels and signal attenuation is

not trivial. In order to constrain the outputs of algorithms

to extract the thickness of exposed crust layers, this work

leverages the fact that the thickness of the layers is typically

locally continuous. The proposed method uses a combination

of image processing and acoustic signal processing, and in-

stead of considering signals individually, translates successive

measurements into a spatial frame and applies image process-

ing techniques to find layers that are consistent.

Fig. 1. Picture of Mn-crust sample (thickness = 85mm)

The rest of the paper is organized as follows. The acoustic
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Fig. 2. Principle of thickness measurement

probe and its principle of operation are described in Section

II. Section III details the proposed method. In Section IV,

implementation of the algorithm and results are presented. The

results are discussed in Section V.

II. SYSTEM OVERVIEW

The acoustic probe emits a 2 MHz amplitude modulated

signal, which generates a 200 kHz parametric wave that pen-

etrates the seafloor. The beam is focused on the seafloor such

that it projects a spot of 3 cm diameter at a distance of 1.5 m.

The probe is an improved version of the probe developed

in [7], which used a 100 kHz wave modulated on a 1 MHz

carrier wave. The probe records the reflections of the wave at a

sampling rate of 2 MHz. Figure 2 shows a typical measurement

scenario on a Mn-crust sample. The recorded signal, in an ideal

scenario, will consist of two major reflections, one from the

top of the seafloor (i.e. top of the Mn-crust) and another from

the interface between the Mn-crust and the substrate rock on

which it is formed. The time delay between the reflections

is twice the thickness of the crust multiplied by the velocity

of sound in Mn-crust. Using the velocity measured in prior

studies [7], the thickness is calculated.

The reliability of the calculation is affected by noise in the

recorded signal arising due to scattering, multi-path reflec-

tions, and seafloor features such as local inclusions inside the

crust [8]. In areas without Mn-crusts, there will not be a second

reflection. The signal, therefore, may not contain two uniquely

identifiable reflections. In such cases, misidentification of top

and bottom reflections may occur or the identification might

fail altogether. Since Mn-crusts are hydrogenetic deposits, the

thickness can be assumed to not vary abruptly; this will be

violated in noisy measurements, resulting in an output which

is not locally continuous.

The measurements begin with the firing of a short am-

plitude modulated 2 MHz burst, and recording its reflections

for 4.096 ms where measurements are repeated at a sampling

interval of 50µs. The signal shown in Fig. 2 shows part of

a single pulse. An arbitrary number of pulses (denoted as N)

are stacked together to form a frame. N is decided by the

user depending on the number of pulses to be processed. The

frame is formed in such a way that each pixel is a signal

value, each vertical line from top to bottom is the recording

of a single pulse, and these are stacked consecutively from

left to right. Each frame is treated as a 2-D grayscale image.

Since the axes are aligned with respect to time, it does not

always scale linearly to distance. In order to reconstruct the

physical scales, the data are plotted on a distance scaled axes

based on the vehicle’s navigation data and the angle of the

gimbals in later processing stages. This is described in detail

in section III.

III. ALGORITHM AND PROCESSING WORKFLOW

The process of finding thickness of Mn-crust from the

recorded data consists of four steps - filtering individual

pulses, extracting signal boundaries, re-framing the signal into

a distance based grid, and identifying reflections to calculate

thickness. The complete algorithm is listed in Fig. 3.

The pulse transmitted from the acoustic probe is a paramet-

ric wave whose shape can be approximated into an exponen-

tially decaying sine wave. By deconvolving this signal with

the reflected signal, the exact instants where the reflections

happened can be identified from the recorded signal. However

deconvolution is highly sensitive to noise and noise levels

are very high in underwater measurements. Therefore, an

equivalent operation was performed by calculating the cross

spectral density between the two signals. The recorded signal

was cropped using a moving rectangular window and the

cross spectral densities are calculated at regular intervals. An

analysis of the resultant spectrum reveal that the strongest

components in the spectrum occur around 200 kHz, the trans-

mitted signal frequency, as shown in Fig. 4. The spectral

components that fall within the 3 dB bandwidth - which was

identified to be between 70 kHz and 300 kHz - are selected and

a filtered pulse is reconstructed by adding these components

to increase the signal to noise ratio.

The reconstructed signals are assembled into an image

frame using the methodology explained in section II. This

image is then filtered using a median image filter in order

to remove shot noise without blurring the image. In the

frame, the reflections from the crust are continuous regions

having relatively high intensity values. They are selected by

thresholding the image using an adaptive threshold value.

Otsu’s method is used for calculating the threshold value [9].

The adaptive threshold will ensure that variations in signal

levels across different datasets arising due to changes in the

underwater environment and changes in the system tuning does

not affect the results. The resulting binary image will have

several small disconnected peaks. In order to consider these

into the signal region, a morphological closing operation is



Require: For the selected area, identify the pulses to be

processed

Require: Calculate pose information for the robot and acous-

tic probe

1: for each pulse in the frame do

2: Calculate 3D location of each point

3: Pass the pulse through cross spectral density function

and split the components

4: Discard values in noisier frequencies

5: Using selected components, reconstruct a filtered pulse

6: end for

7: Assemble N pulses into a frame ⊲ N decided by the user

8: Run a median filter on the frame and remove noise

9: Threshold the image into binary image ⊲ Otsu’s method

10: Using morphological closing, fill gaps in the binary image

11: Identify the top and bottom limits of the signal region

12: Trace a virtual line in 3D space along the top reflection

13: Integrate along the line to find distance traveled

14: Segment the trace distance into uniform intervals

15: Vertically offset each pulse based on depth

16: Interpolate pulses from step.5 into the new x-z space

Ensure: A signal frame with time axes is converted to frame

with distance axes; where signals can be spatially under-

stood intuitively

17: Run a median filter on the frame

18: Compensate for attenuation in the region of interest

19: Run a canny edge detector to locate signal transitions

20: Discard edges outside the boundaries identified in step.11

21: On the edge image, run a progressive probabilistic hough

transform to detect continuous lines

22: Discard steep lines and repeated lines

23: Discard pulses over non-crust areas ⊲ if the classification

information is available

24: Calculate strength of reflection for each line

25: Identify bottom reflection as the strongest line

26: Wherever reflections are available, calculate thickness

return An array of thickness estimates

Fig. 3. Processing Steps

performed using a rectangular kernel of 6 × 11 pixels. The top

and bottom boundaries of the signal region is then extracted

as the first non-zero line with a minimum width (a value of

approximately 7.5 mm was used) from the top and bottom of

the image respectively. Further processing focuses only in this

region to find the reflections and thickness.

The physical nature of Mn-crusts dictate a dependence on

spatial scales and is independent of temporal aspects such as

the frequency of measurement or the speed of AUV. Thus, for

further processing, the signals are transformed into a spatial

2-D frame. A point in 3-D space is identified for each of the

pulses as the highest point of the top line. The coordinates of

these points are calculated using the localization information

of the AUV and the pose of the acoustic probe using a

coordinate transformation. A line is then traced through these
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Fig. 4. Cross correlation spectrum. The 3 dB bandwidth is highlighted

points in 3-D space, which is considered as the top surface of

the Mn-crust. The distance along the this line is calculated and

is used as the horizontal coordinate for the frame. The trace

distance is sampled at uniform intervals of defined horizontal

resolution (the authors used a resolution of 0.01 m, which

is the approximate average physical distance between two

adjacent pulses). The vertical resolution was calculated using

equation 1.

Vres =
xshift · νsound

2 · fs
(1)

where νsound = 2700m/s is the velocity of sound in

Mn-crust [7], xshift is the width by which the window is

shifted while calculating the cross-correlation spectrum, and

fs = 2MHz is the rate of sampling of the measured signal.

Although this vertical resolution does not accurately describe

all parts of the image due to the change in speed of sound, it is

valid throughout the region of interest of the signal calculated

in the previous step and thus can accurately describe the

reflections inside the crust.

The signals are plotted similar to the previous frame, left

to right and top to bottom, with the vertical axis of the frame

compensated for each pulse separately based on probe’s depth

for each pulse. The horizontal location of each pulse is interpo-

lated using a one dimensional nearest neighbor interpolation

using k-D trees. The result is an image frame consisting of

signal reflection intensities with physical locations to scale,

from which the reflections and therefore the thickness can be

determined.

The image is then filtered using a 2D median filter for

removing noise using a square kernel of approximately 5 mm

size. The filtered image is then corrected for attenuation,

between the top and bottom boundaries of the signal’s region

of interest. Equation 2 shows the calculation performed.



γi
α [z] =

{

γi [z]× 102αf (z−ztop)/20 if ztop ≤ z ≤ zbot

γi [z] elsewhere
(2)

where γi [z] denotes the pixel at vertical coordinate z and

horizontal coordinate i. The signal’s region of interest, as iden-

tified in step 11 is between ztop and zbot. αf = 1.266dB/cm
is the attenuation coefficient of Mn-crust at the measuring

frequency, calculated using the value measured in [7].

The final steps of calculation consists of identifying the

lines corresponding to the secondary reflections within the

region of interest. The primary reflection is identified as the

top of the signal region. Since each reflection indicates a

transition of signal levels, a canny edge detector is used to

extract edges in the frame. A progressive probabilistic hough

transform then detects lines having a minimum length and

continuity [10]. The probabilistic progressive hough transform

is chosen over other line detection methods because it is able

to detect line segments along with their start and end points

with a specified minimum length. Among all lines detected,

overlapping lines and steep lines are discarded (the authors

used a threshold value of slope of 10◦ with respect to the

top reflection). The secondary reflection, originating from the

Mn-crust - base rock interface, is assumed to be the strongest

of all reflections present in the signal. In order to determine

the stronger reflections, the remaining lines are analyzed to

calculate a strength of reflection, which was defined as the

sum of intensities of all points lying on the line. The image

is then scanned horizontally to find the secondary reflections.

Wherever lines overlap, the line having highest intensity is

selected as the secondary reflection. Finally, the thickness is

calculated as the difference between the top and bottom lines.

IV. IMPLEMENTATION AND RESULTS

The proposed method is verified using the data collected

during field experiments conducted at No.5 Takuyo seamount

located in the northwest Pacific Ocean. Results from two

research cruises, namely KR16-01 and NT13-13 are used.

NT13-13 cruise was conducted in 2013 and performed survey

of the Mn-crusts using the ROV HyperDolphin using the

acoustic probe, at depths ranging between 1400 and 1700

metres. The ROV also collected a number of samples with

a mean thickness of 60 mm, one of which with a measured

thickness of 85 mm is shown in Fig. 1. KR16-01 research

cruise used the research vessel Kairei and surveyed Mn-crusts

using the AUV Boss-A in 2016. Visual 3D mapping systems

on board the AUV and ROV collected data which is used for

reconstructing the 3D colour maps of the seafloor.

The proposed method is verified on the data collected over

a patch of seafloor of approximate length of 8.1 m, a visual

3D reconstruction of which is shown in Fig. 5. This data

was collected during the BSA-032 dive using Boss-A. The

initial processing steps are shown in Fig. 6. The acoustic

data collected is shown in Fig. 6a as a colour-coded image

frame. The values are scaled along a logarithmic axis with

Fig. 5. A snapshot of the seafloor showing the region from where acoustic
reflections were obtained

lighter colours indicating a higher signal amplitude level. After

filtering the individual pulses and the signals are arranged into

an image frame as shown in Fig. 6b.

The image is thresholded into a binary image followed by

a morphological closing operation resulting in Fig. 6c. The

limits of the signal region are identified and are shown in

Fig. 6d overlaid on Fig. 6b. The top boundary is plotted as

a blue line and the bottom boundary is plotted as a green

line. Tracing the top line in 3D space result in Fig. 7. The

traced line has a length of about 22 m on a patch of about

8 m distance; this behavior arises due to the gimbals which

causes the acoustic beam to move in a nonlinear fashion on

the seafloor. The signals are then interpolated into a distance

based axes resulting in Fig. 8a; the horizontal resolution of the

axes is chosen to be 10 mm and vertical resolution is calculated

to be about 1.9 mm.

After filtering and attenuation correction, a canny edge

detector is applied on the signal region of the frame resulting

in the black edges shown in Fig. 8b. On this edge image,

within the limits identified in Fig. 6d, the potential secondary

reflections are identified using progressive probabilistic hough

transform. The calculation used a minimum line length of

60 cm and a maximum gap of 10 cm as parameters. These

parameters ensured that long lines are detected despite smaller

gaps, while small inclusions that result in pulses with ideal

reflections are excluded. The resulting lines are plotted as

red lines in Fig. 8b. Optimal candidates for the secondary

reflections are identified based on the intensity of reflections

and thickness values are calculated. The estimated thickness

values are shown in Fig. 8c.

The mean thickness of the crust in the region was calculated

to be approximately 65 mm, which is consistent with the

observations made during the cruise. The thickness values

are plotted as a colour coded bar graph above the seafloor

reconstruction in Fig. 9. The figure shows that the detection

is consistent with the coverage of crust, with no reflections

identified over sand section in the middle of the patch.

V. CONCLUSION

This paper proposed a method to estimate the thickness of

manganese crust deposits from sub-surface acoustic reflections

using techniques from image and signal processing. By assem-

bling subsequent pulses into an image frame and interpolating
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(a) Image frame consisting of 1800 recorded signals cropped to the region containing signals
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(b) Image after CSD and filtering
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(c) Image after thresholding and closing
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(d) Detected top and bottom reflections on signal data

Fig. 6. Steps leading up to detection of the signal boundaries



12
:0
1:
54

12
:0
2:
24

12
:0
2:
54

12
:0
3:
24

Pulse transmit time

0

5

10

15

20

G
ro
u
n
d
tr
ac
e
d
is
ta
n
ce

(m
)

Fig. 7. Integrated trace distance of the signal

them into a distance scaled image, the authors could identify

reflections using probabilistic line detection algorithms. This

allowed the locally continuous nature of Mn-crust deposits

to be leveraged in detecting the sub-surface crust-substrate

boundary. Improved thickness estimates can lead to higher

reliability in estimating the volumetric distributions of Mn-

crust.
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(b) Output of canny edge detector and lines detected
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(c) Estimated thickness values

Fig. 8. Edge detection and thickness estimation

Fig. 9. Colour coded output of thickness plotted over the 3D map


