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Abstract—We describe a novel semi-supervised learning method that reduces the labelling effort needed to train convolutional neural
networks (CNNs) when processing georeferenced imagery. This allows deep learning CNNs to be trained on a per-dataset basis,
which is useful in domains where there is limited learning transferability across datasets. The method identifies representative subsets
of images from an unlabelled dataset based on the latent representation of a location guided autoencoder. We assess the method’s
sensitivities to design options using four different ground-truthed datasets of georeferenced environmental monitoring images, where
these include various scenes in aerial and seafloor imagery. Efficiency gains are achieved for all the aerial and seafloor image datasets
analysed in our experiments, demonstrating the benefit of the method across application domains. Compared to CNNs of the same
architecture trained using conventional transfer and active learning, the method achieves equivalent accuracy with an order of
magnitude fewer annotations, and 85 % of the accuracy of CNNs trained conventionally with approximately 10,000 human annotations
using just 40 prioritised annotations. The biggest gains in efficiency are seen in datasets with unbalanced class distributions and rare
classes that have a relatively small number of observations.

Index Terms—Semi-supervised learning, convolutional neural network, autoencoder, georeferenced imagery, pseudo-labelling
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1 INTRODUCTION

G EOREFERENCED visual images taken by aircraft, satel-
lites and submersibles are widely used in environmen-

tal monitoring. Modern robotic surveys using aerial drones
and Autonomous Underwater Vehicles (AUVs) can collect
thousands to tens of thousands of georeferenced images
in a single mission [1], [2], [3]. As the influx of images
gathered by these platforms increases, the need for domain
expertise to generate appropriate annotations becomes a
bottleneck in our ability to efficiently interpret the data.
Supervised machine learning techniques are potentially use-
ful for automated interpretation. However, environmen-
tal studies have reported limited transferability of learn-
ing from generic training datasets [4], [5], citing the need
for application-specific expert-annotated training examples.
This is limiting since comprehensive training datasets do not
yet exist for many environmental monitoring applications.
The main reasons for this are the high sensitivity of im-
age appearance to environmental conditions (e.g., lighting,
atmosphere/water turbidity), observation variables (e.g.,
range to target, spatial resolution, observation footprint), the
large variability in the appearance of unstructured scenes
and the complexity of the annotation schemes used in
environmental monitoring applications [6], [7]. These factors

• T. Yamada, M. Massot-Campos, A. Prügel-Bennett and B. Thornton
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combined with the large number and different specifica-
tion of the imaging platforms used (e.g., wavelength sen-
sitivity, dynamic range, illumination source for underwater
applications) limit crossover between datasets. Although
unsupervised methods can efficiently process large volumes
of imagery without relying on human annotations, their
outputs typically do not align with the class boundaries of
interest to experts, which limits their value for environmen-
tal monitoring and infrastructure inspection [8], [9].

This paper develops a novel semi-supervised method
that improves learning efficiency when using georeferenced
imagery, and reduces the human effort needed to train
classifiers for environmental monitoring applications. The
method is designed for whole image classification of natural
scenes in downward looking imagery and consists of the
following parts:

• Unsupervised learning - extracting latent representa-
tions of an unlabelled image dataset

• Prioritised labelling - identifying a subset of repre-
sentative images for human annotation, and assign-
ing predictive pseudo-labels to the remaining data.

• Supervised learning - use of prioritised annotations
and pseudo-labels to train CNNs

For unsupervised learning, we investigate the impact on
downstream accuracy when two different types of autoen-
coder are used to learn latent representations. The first uses
only the information in images and the second is a location
guided autoencoder (LGA) that also uses georeference infor-
mation to regularise learning [9]. For prioritised labelling,
we investigate the impact of using different methods to au-
tomatically identify a small subset of images for prioritised
annotation and estimate class decision boundaries when
assigning predictive pseudo-labels in unannotated images.
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The prioritised annotations and pseudo-labels can be used
to train different CNNs. We analyse the success and sensitiv-
ity of the proposed method using four different real-world
datasets consisting of tens of thousands of georeferenced
environmental monitoring image patches that have expert
human labels for training and validation. The gains in learn-
ing efficiency are assessed based on the achieved accuracy
and number of human annotations used in comparison to
CNNs trained using well established transfer and active
learning methods.

The advantages of the semi-supervised method for
downstream classification tasks are:

• Unlike unsupervised methods, classifier outputs are
aligned with class boundaries of interest to humans

• Accurate results can be achieved with significantly
reduced human annotation effort compared to con-
ventional supervised methods, and significantly re-
duced human and computational effort compared to
iterative training approaches (e.g., active learning)

The reduction in human effort needed to achieve an equiv-
alent accuracy to current state of the art approaches means
that end-to-end training can be achieved on a per-dataset
basis, making our approach suitable for use in domains
where there is limited transferability of learning between
datasets. The rest of this paper is structured as follows;
section 2 reviews relevant machine learning literature and
section 3 describes the semi-supervised training method.
Experimental results for georeferenced seafloor and aerial
image datasets are presented in section 4.

2 BACKGROUND

2.1 Machine Learning for Environmental Monitoring

Determining the distribution of land cover, land use, habi-
tats, substrates and infrastructures are tasks that lie at the
core of environmental monitoring. One way of achieving
these tasks is to interpret imagery using established clas-
sification schemes [10], [11], where often a small subset
of images are selected for human annotation from which
aggregate statistics can be derived. For more comprehensive
analysis, many groups have reported automated interpreta-
tion of imagery using machine learning, with representative
literature described in the following subsections.

2.1.1 Supervised Learning
A large proportion of automated classifiers have used a
combination of hand-picked features chosen based on ex-
pert knowledge of the application domain or through a
reward-based selection process [12], [13]. In [12] the authors
apply a Support Vector Machine (SVM) to texture- and
colour-based features designed to classify seafloor images
into different substrates types for reef ecology surveys.
In [14] hand-picked geometric features are combined with
SVM for classification of satellite images. In [13] a similar
approach is applied for seafloor mineral prospecting. Spatial
invariant features such as Local Binary Patterns (LBP) [15]
and Spatial Pyramid Matching (SPM) [16] have also been
effectively applied to classification problems for land [17],
[18] and seafloor imagery [19], [20]. However, these types of

features require manual tuning of parameters, or feature en-
gineering, to efficiently describe each independent dataset.
Furthermore, a separate classification process is needed,
which typically requires further parameter tuning. As such
these methods often require expert knowledge of both the
data and application domain, and have limited versatility
when applied to multiple datasets.

A key advantage of deep learning techniques is that
both the latent representation of data and classification
can be simultaneously optimised in a single end-to-end
training process. This avoids the need for costly and poten-
tially subjective feature engineering and reduces the need
for parameter tuning, making deep learning techniques
a compelling choice for image classification tasks. Deep
learning techniques are widely used for interpreting aerial
and satellite imagery [21]. In [22] the ResNet [23] deep
learning CNN is used to classify images of coral into nine
separate classes, achieving higher classification resolution
than prior studies and demonstrating the ability of deep
learning to effectively model class boundaries used in scien-
tific taxonomy. However, to work effectively, deep learning
classification techniques typically require a large number of
annotated examples of each class. Although labelling plat-
forms tailored to aerial imagery [24] and seafloor imagery
exist [2], [5], the sensitivity of images to environmental and
acquisition conditions, complexity of annotation schemes
and comparatively small size of each environmental mon-
itoring community means that large-scale label repositories
such as those in terrestrial imaging [25] and autonomous
driving [26] do not yet exist. Several annotated datasets
exist for satellite imagery [27]. However, most of these target
built environments and artificial objects, and the annota-
tions are not suitable for monitoring and conservation of
the natural environment, where standardised but complex
hierarchical annotation schemes that consist of hundreds to
several thousands of terms are used [6], [7]. Furthermore, for
sub-sea imaging, most groups gather images using custom
built imaging hardware, where in [28] the authors reported
that even small differences in sub-sea imaging hardware
limits learning transferability and distorts deep learning
classifier outputs. In [29] a pipeline to make training datasets
transferable for inference on images from other datasets is
proposed for segmentation of marine organism. The work
proposes how to reduce scale variance across multiple
datasets, which is highlighted as an important consideration
for seafloor imagery. A detailed description of this and
other domain specific distortions (e.g., blur, haziness, and
colour distortion) that affect seafloor imagery can be found
in Appendix A. For datasets where these disturbances are
non-negligible, training on a per-dataset basis as is common
in unsupervised learning can be considered a potentially
effective solution.

Under these constraints, a reasonable approach for effec-
tive use of deep learning techniques is to train models on the
target dataset itself. However, the implied requirement to
annotate large numbers of images every time a new dataset
is obtained is unlikely to be justified for most applications,
forming a barrier to wide-spread adoption of deep learning
for image interpretation in environmental monitoring appli-
cations. This motivates research into techniques for effort
reduction.
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2.1.2 Unsupervised Learning
Unsupervised learning techniques have great potential for
image interpretation in environmental monitoring because
they do not require annotations, and so can be efficiently
trained and applied on a per-dataset basis. As with any
automated image analysis, feature engineering is crucial
for effective interpretation. In [8] LBP [15] features derived
from greyscale images, 3D rugosity and colour are applied
to seafloor image clustering. The authors later applied
SPM [16] as a more generic approach to describe seafloor
images [30]. These scale invariant features are also used for
clustering of aerial and satellite imagery [31]. In [32], the
non-parametric Bayesian clustering technique used in [8]
and [30] is extended to incorporate annotations made dur-
ing active learning [33] for seafloor imagery. In [34] the accu-
mulated histogram of oriented gradients from keypoints are
used to describe each image, and this is applied to clustering
and anomaly detection. More recently, Shields et al. [35]
used unsupervised clustering results generated from visual
images as labels for supervised learning of terrain elevation
datasets. To avoid the demanding trial and error process of
feature engineering, we developed an unsupervised deep
learning LGA in our previous work [9]. The proposed LGA
learns latent representations without the need for feature
engineering. The georeference information attached to each
image is used to regularise learning, allowing CNN architec-
tures to leverage this information and describe patterns that
occur on spatial scales larger than a single image frame in
a single end-to-end process. Since the LGA does not require
any human annotations, it can be efficiently trained and
applied on a per-dataset basis, and this has been shown
to be effective for clustering and content-based query of
seafloor images. Tile2Vec [36] is a method proposed for
representation learning of aerial and satellite imagery, where
a similar approach based on the physical distances between
cropped image patches are leveraged during training.

However, a disadvantage of unsupervised approaches
is that the resulting clusters do not attempt to align with
the class boundaries of interest to humans, and when latent
representations are optimised on a per-dataset basis, it is
not possible to make direct comparisons between clusters
or perform content-based queries across multiple processed
datasets.

2.2 Methods to Reduce Annotation Effort
The shortage of annotations is a common problem when
supervised learning is applied to real-world problems, and
a number of concepts have emerged to address this issue.

2.2.1 Transfer Learning
Transfer learning allows supervised learning models to be
trained using a relatively small number of annotations in
the target dataset by making use of much larger annotated
datasets from a different domain. Several frameworks have
been proposed to implement this concept [37]. Network-
based transfer learning has been applied in many appli-
cation domains including medical [38], satellite [39], and
seafloor imaging [40]. This approach works by reusing
networks that have been pre-trained using large, generic
datasets (e.g., ImageNet [41], COCO [42], Pascal VOC [43])

that consist of hundreds of thousands to more than ten
million labels as an initial model. Though the number of
dataset specific annotations needed depends on the domain,
number of classes and data augmentation methods used,
previous studies on satellite [44] and medical imagery [38]
have required several hundreds of domain specific labels for
effective use.

2.2.2 Prioritised Labelling
Images in a dataset do not have equal value for CNN
training. In [45] the authors demonstrate that training data
selection can have a significant impact on learning, where
CNNs trained on a well selected subset of annotations
can outperform CNNs trained using a larger number of
annotations. In [46] annotation efforts are prioritised using
k means clustering to estimate the entropy of each sample,
showing significant gains in performance compared to ran-
dom selection.

In active learning [33], the learner interacts with human
annotators by iteratively proposing data samples that it
considers will most efficiently improve performance. Sev-
eral strategies have been proposed to achieve this. Most
approaches prioritise unlabelled samples that have the high-
est estimated uncertainty, or are predicted to have the
biggest impact on the model. However, the heuristics used
to suggest samples can only be calculated after the initial
subset has been analysed by the algorithm. Although the
initial subset can impact subsequent learning performance,
its selection falls outside of the scope of most active learning
techniques [33], [47].

In [40] an autoencoder is used to locate objects of interest
in an unsupervised manner. The method highlights these
regions to human experts in order to facilitate efficient use
of time for manual segmentation. The approach leverages
the assumption that interesting objects are relatively rare in
the original image datasets they are applied to. Regions with
a high autoencoder reconstruction loss value are considered
likely to include targets of potential interest, and these
regions are flagged for prioritised annotation by humans.
Active learning is also applied for seafloor image interpre-
tation in [32], [35], where the authors implemented this with
SPM as the feature descriptor.

2.2.3 Group Labelling and Label Extrapolation
Group-based labelling [48], [49] is a technique that assigns
annotations to subgroups of clustered data in order to
reduce the human annotation effort. An advantage of this
approach is that it can be applied to datasets with no labels
by using unsupervised clustering methods to generate the
groups. However, determining the annotation for a cluster
of images can be more complex than per-sample based
annotation, especially when unsupervised cluster decision
boundaries are not aligned with the desired class bound-
aries, resulting in conflicted human annotations. In [50] the
authors modified Gaussian mixture model based cluster-
ing to find clusters with high intra-cluster similarity since
the samples in these clusters are considered to be more
informative than others. Although these techniques have
shown significant improvement in learning efficiency, the
underlying assumption is that effective clustering can be
achieved.
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Predictive pseudo-labelling [51] reduces human effort by
first training a classifier on a small subset of data that re-
quires fewer annotations than the target dataset. An advan-
tage of this over group labelling is that annotators consider
individual images. After initial training, the classifier pre-
dicts labels for the remaining data, and these pseudo-labels
are used together with the original annotations to fine-tune
a classifier. Li et al. [47] reports that SVM and Random For-
est classifiers outperform CNNs when generating pseudo-
labels from an initial annotated subset. Wu et al. [52] uses
pseudo-labelling to improve the classification performance
for a hyperspectral satellite image dataset, demonstrating
effective application of this approach to unstructured en-
vironmental monitoring data, where random subsets were
used for initial training. The use of prioritisation methods
for subset selection in pseudo-labelling has not previously
been investigated.

3 EFFICIENT LEARNING IN ENVIRONMENTAL MON-
ITORING IMAGERY

Our aim is to develop a method to efficiently learn class
boundaries of interest to humans with fewer annotations
than existing methods, and apply this to environmental
monitoring image classification problems. Fig. 1 shows the
proposed semi-supervised learning pipeline. It learns latent
representations of images in a dataset using the LGA [9]
(section 3.1). Next, a subset of image samples are selected
based on hierarchical k means clustering (section 3.2) for pri-
oritised annotation by humans. Pseudo-labels are assigned
to all remaining images (section 3.4) based on the annotated
subset. The human annotations and algorithm generated
pseudo-labels are then used to fine-tune a CNN, which
can be used to solve a downstream classification task. The
method is designed to work offline on a per-dataset basis,
once the complete dataset has been gathered. The initial la-
tent representation learning and identification of prioritised
images for labelling are unsupervised, where all images in
the dataset are available for these steps without the need
for any human input. Human input is only needed to anno-
tate the subset of prioritised images, where the number of
prioritised images can be matched and optimised according
to the availability of human effort. As such, the method is
compatible with post data acquisition workflows associated
with environmental survey field work. The LGA driven
Semi-Supervised (LGA-SS) method is versatile as it allows
a CNN to be both trained and applied to classification on a
per-dataset basis, making it effective in domains where the
transferability of learning between datasets is limited.

3.1 Location Guided Autoencoder

Patterns of interest in environmental monitoring often occur
on spatial scales larger than the image patch size considered
by CNNs during their optimisation. The LGA overcomes
this problem by introducing georeference regularisation in
autoencoder training using a modified loss function [9]. This
is designed to reflect the assumption that two images captured
within a close distance tend to look more similar than two that
are far away due to the presence of patterns beyond the
footprint of a single image frame. The approach allows the

LGA to recognise patterns that recur in images that are close
to each other and prioritise these in its learning without
introducing artefacts due to imperfect image stitching. The
latent representations obtained using the LGA have been
shown to perform better than those obtained using a stan-
dard convolutional autoencoder when used for clustering
and content-based image retrieval [9].

3.2 Data Selection for Prioritised Labelling

The standard CNN learning process expects class-balanced
distributions in training datasets. Skewed class distribu-
tions, such as those found in natural scenes on land and
on the seafloor, can result in overfitting of classes with rela-
tively large numbers of samples. If M images are randomly
selected for annotation, training datasets approximate the
skewed class distributions of the parent populations, result-
ing in non-ideal conditions for training and carrying a risk
that smaller classes may not be represented in training for
small M values.

In the proposed pipeline, k means clustering is applied
to the LGA’s latent representation to identify densely pop-
ulated regions. The number of clusters should be large
enough to avoid missing small classes. As long as this
condition is satisfied, the outputs are not strongly sensitive
to small differences in k as the clusters attempt to evenly
represent the different regions of the latent space. In this
work we define, k = dke/10e × 10, where ke is a number of
clusters estimated by the elbow method [53]. The value of k
is ke rounded up to the nearest ten. Next, a subset of images
for prioritised annotation are selected by taking bM/kc or
dM/ke images from each cluster so that the total number of
images is M . This generates a training class distribution that
follows the cluster distribution, which eases the class im-
balance problem as long as effective clustering is achieved.
The way samples are chosen from within each cluster can
also affect learning. In [46] it is assumed that the samples
close to the cluster boundaries are important as they have
a greater effect on classification decision boundaries. This
assumption is reasonable if the boundaries of clustering and
classification are comparable, but in situations where class
boundaries are ambiguous, like in many environmental
monitoring application, it is possible that variability in the
annotations will degrade learning performance.

In this study, we consider that the samples provided
for training should represent the variability within each
cluster in order to deal with situations where the cluster-
ing resolution is not sufficient to resolve class boundaries.
We implement two approaches to achieve this. The first
approach uses k means clustering and randomly samples
data from within each cluster so that each cluster in the
LGA latent representation is evenly represented in the
training data. We also investigate a more structured form
of latent space representation, which we implement using
hierarchical k means clustering. This approach is originally
proposed in [54] where a multi-stage clustering process is
introduced. The first stage explores the dominant patterns in
the whole dataset, and the following stages attempt to select
a representative set of samples from within each cluster. This
approach has also been applied to extract representative
data in text clustering problems [55]. In this work, we
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Fig. 1: A flow diagram of the proposed pipeline for LGA driven Semi-Supervised (LGA-SS) training of CNNs. Once a
dataset is gathered, the latent representations of the images in the dataset are generated using the LGA [9] (section 3.1),
after which hierarchical k means clustering (section 3.2) is used to identify a prioritised subset of images for human
annotation. These annotations are used together with a set of algorithmically generated pseudo-labels for the remaining
unannotated data to train a CNN that can be used for downstream classification tasks. The proposed LGA-SS method
allows a CNN to be trained and applied to classification tasks on a per-dataset basis, making it effective in domains where
there is limited transferability of learning between datasets.

consider that it is important to guarantee that samples are
selected from dense regions of the latent representation, and
so after the first k means clustering, we generate bM/kc or
dM/ke sub-clusters within each cluster and select samples
that are closest to each sub-cluster centroid so that the total
number of samples is M .

3.3 Data Augmentation
Data augmentation [56] plays an important role in reducing
the risk of overfitting during CNN training. Since most
visual features in downward looking images of the seafloor
and of land can be considered invariant to rotation and flip-
ping [57], we apply these augmentations randomly during
the training process, together with random shift operations
to account for uncertainty in position. These transformations
are applied with different parameters (i.e., rotation angle
and offset) that are randomly assigned every time an image
is fed into the model during training. Weighted sampling is
also applied at each epoch to balance the number of samples
in each class. Data augmentation is not applied to colour and
scale distortions since it can be consistently corrected taking
into account illumination and turbidity conditions and lens
distortions [9].

3.4 Pseudo-Labelling
We predict pseudo-labels for each unseen image based
on its location relative to annotated samples in the LGA
latent space. Although the clustering results used to iden-
tify images for prioritised annotation can be used for this
purpose, the decision boundaries of clusters and classes are
not necessarily aligned. Therefore, we investigate different
approaches to estimate class decision boundaries, compar-
ing the performance of nearest neighbour (1-NN), Random
Forest and SVM [58] with linear and Radial Basis Function
(RBF) kernels as methods capable of expressing varying
degrees of complexity of class boundaries in the latent space.

Although the original pseudo-labelling implementation
for deep learning applies a single winner takes all class label
to unseen data [51], recent research has demonstrated that
taking the uncertainty of each pseudo-label into consider-
ation can improve downstream classification accuracy [59],
[60]. Class boundaries in environmental monitoring data are
often ambiguous and so to address uncertainty near class
decision boundaries, we implement probabilistic pseudo-
labelling using a Gaussian Process classifier [61] to predict
class conditional probability distributions for each sample
in the latent space for comparison with the other methods.

Both the annotations and pseudo-labels assigned to the
remaining images are used to train CNNs, where for prob-
abilistic pseudo-labelling, the conditional probability distri-
butions are applied to the softmax loss of CNN training
in order to describe the pseudo-label uncertainty. The suit-
ability of these classifiers for pseudo-labelling is determined
through validation against human annotations.

4 EXPERIMENT

4.1 Dataset
The proposed method is applied to four different envi-
ronmental monitoring image datasets. Fig. 2 shows the
spatial and class distributions of the ground truth for each
dataset. The Seafloor dataset (Fig. 2a, see Appendix A for
further details) consists of seafloor visual images collected
by an AUV, and the aerial image datasets (Fig. 2b - 2d,
see Appendix B for further details) are of different types of
scene (Mountain, Island and Urban). The class distributions
in these spatially continuous datasets are highly skewed
compared to the generic datasets that are often used in
benchmarking studies. Our experiments consider each class
to be of equal importance. The results are assessed based on
the macro-averaged F1-score, where we take the mean and
standard deviation (SD) of 10 repeated sets of experiments
under each test configuration.
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(a) Seafloor (b) Mountain (c) Island (d) Urban

Fig. 2: Spatial patterns (top) and class distributions (bottom) of ground truth classes in four environmental monitoring
datasets. Each natural or artificial object class shows a unique spatial pattern in each dataset. The class distributions are
highly skewed since all the images in the corresponding areas are included in the datasets without any manual selection
process. The Seafloor dataset (2a) consists of colour seafloor imagery collected by an AUV. The three aerial datasets
(Mountain, Island and Urban) consist of aerial images cropped from ESRI World Imagery. Details of these datasets can be
found in Appendices A and B, respectively.

4.2 Classification with Conventional Classifiers

We investigate the performance of conventional (non-CNN)
classifiers in order to generate effective pseudo-labels from
a small subset of annotated examples. Five well established
classifiers; k-NN with k = 1 (1-NN), Random Forest (RF),
SVM with linear (L-SVM) and RBF kernels (R-SVM) [58]
and Gaussian Process (GP) [61] classifiers are applied to
the latent space mapped by an LGA that has been trained
on all available image patches. The results are compared
with those of a standard convolutional autoencoder that
uses the same architecture as the LGA except for the geo-
reference regularisation. To evaluate the performance with
a small number of annotations, an adjusted cross-validation
is applied. First, half of the annotated image patches are
randomly selected as a test subset, preserving the class
distribution of the entire dataset in each dataset. Then M
images are selected from the remaining patches based on
random selection, k means based selection, and the pro-
posed hierarchical k means based selection. Following the
equation defined in section 2.2.2, k = 20 is used for both
k means and hierarchical k means based selection for all
the datasets. In k means based selection, M/20 images are
selected randomly from each cluster. In hierarchical k means
based selection, the second stage k means is applied to each
cluster to find M/20 sub-cluster centroids, and the images
closest to each centroid are selected for annotation. Training

and testing are executed ten times for each configuration
with M = 20, 40, 100, 200, 400, 1000 and 7500 (for the aerial
datasets) or 9370 (for the Seafloor dataset).

TABLE 1 and TABLE 2 show the mean and SD of the
F1-scores for the ten-time cross-validation with each config-
uration (A1 - A20 in TABLE 1 and A’1 - A’20 in TABLE 2)
on the seafloor and aerial datasets, respectively. The data
selection strategy has a greater impact on performance
than the choice of classifier, with all classifiers benefiting
significantly from hierarchical k means prioritisation. The
relative gains in accuracy compared to random selection
are especially large for small values M (20, 40 and 100),
confirming the importance of the data selection strategy
when training with a small number of annotations. For the
Seafloor dataset (TABLE 1), the combination of LGA based
pre-training and hierarchical k means based data selection
with a R-SVM (configuration A14) performs the best among
the tested cases for all values of M . The L-SVM and GP
generally perform better than 1-NN and RF, where the L-
SVM tends to be better for small values of M and GP
better for larger M . A similar trend is observed with the
aerial datasets (TABLE 2). For small values of M , L-SVM
outperforms R-SVM; however, the difference is marginal.
The largest efficiency gains are achieved in the datasets
that have rare classes with the smallest number of relative
observations (i.e., Seafloor and Mountain).

The standard deep learning autoencoder (configuration
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TABLE 1: F1-Score (Macro-Average) Mean and SD (%) of the Classification Result with Conventional Classifiers on the
Seafloor Dataset

Config.
Label

Feature
Learning

Data
Selection

Classifier
Number of Annotations (M )

20 40 100 200 400 1000 9370
A1 LGA random 1-NN 31.8±9.1 40.1±3.0 44.0±4.5 47.6±3.3 48.9±3.1 50.6±1.5 54.0±0.5
A2 RF 27.6±6.8 38.3±4.1 43.0±4.5 48.7±4.9 51.8±3.3 56.4±1.4 61.0±0.3
A3 L-SVM 33.8±9.6 43.5±3.9 48.2±4.4 52.6±3.4 54.3±2.5 56.3±1.9 60.0±0.5
A4 R-SVM 31.6±7.6 42.4±3.7 48.4±3.7 54.4±3.3 57.4±3.7 60.2±0.8 63.3±0.7
A5 GP 29.6±5.2 39.1±6.2 46.1±3.9 47.2±5.2 52.5±2.2 56.9±2.0 63.2±0.6
A6 k means 1-NN 41.6±5.1 46.2±5.2 47.2±4.3 50.8±1.7 51.0±1.9 52.5±1.1 54.0±0.5
A7 RF 33.7±5.7 43.1±5.2 49.2±4.0 54.7±1.2 56.9±1.6 59.1±0.7 61.0±0.3
A8 L-SVM 43.2±5.4 47.9±5.8 51.5±4.2 56.6±1.3 57.1±1.4 59.9±1.0 60.0±0.5
A9 R-SVM 42.0±6.0 50.7±5.3 55.1±4.4 59.2±1.5 60.5±1.3 62.4±0.8 63.3±0.7

A10 GP 42.1±6.8 45.8±6.8 51.8±2.5 55.1±1.5 57.2±1.6 60.0±0.8 63.2±0.6
A11 H-k means 1-NN 46.9±7.2 48.6±4.3 48.9±2.9 52.2±2.4 52.3±1.7 53.0±0.8 54.0±0.5
A12 RF 42.1±7.4 47.9±3.9 51.8±2.5 55.8±1.5 57.6±1.5 59.3±0.9 61.0±0.3
A13 L-SVM 47.4±8.1 50.9±4.7 53.6±3.0 56.8±1.6 58.3±1.2 60.8±0.9 60.0±0.5
A14 R-SVM 48.0±8.3 54.8±2.3 56.9±2.0 60.1±1.0 61.0±1.0 62.7±0.7 63.3±0.7
A15 GP 44.5±7.7 51.4±3.8 55.1±2.3 56.1±2.1 59.5±1.2 61.2±1.1 63.2±0.6
A16 Auto- H-k means 1-NN 25.5±1.3 30.5±1.5 33.2±1.0 33.8±1.2 35.6±1.4 36.6±0.8 38.3±0.5
A17 encoder RF 24.4±1.7 29.0±3.0 32.0±1.6 33.6±2.2 35.6±1.1 39.1±0.8 41.1±0.4
A18 L-SVM 10.0±5.6 8.3±4.5 6.0±3.4 8.5±8.5 6.7±2.6 10.9±3.1 34.9±0.7
A19 R-SVM 21.7±3.4 28.2±2.6 29.6±4.0 35.0±1.8 38.3±1.5 42.0±0.9 44.9±0.6
A20 GP 9.7±0.0 9.7±0.0 9.7±0.0 10.3±1.4 14.9±1.3 18.9±0.8 21.5±0.3

A16 - A20 in TABLE 1 and A’16 - A’20 in TABLE 2) is
significantly less effective than the LGA for all the datasets
investigated in this work. This is an expected result since
our previous work has already shown that the autoencoder
achieves poor clustering performance without georeference
regularisation [9], and the underlying assumption behind
the data selection strategies investigated here is that effec-
tive clustering can be achieved. The results demonstrate that
the proposed location guided latent representation learning
and representative image selection are effective for envi-
ronmental applications using georeferenced image datasets
across application domains.

4.3 Classification with CNN

This section evaluates the proposed LGA-SS learning
pipeline’s performance using CNNs. The M training images
and test images are selected in the same way as in sec-
tion 4.2. When M is smaller than the total number of avail-
able training data, data augmentation (section 3.3), pseudo-
labelling (PL) or probabilistic pseudo-labelling (PPL) (sec-
tion 3.4) are applied so that the number of training images
at each epoch is the same as the total number of the training
images to allow for fair comparison of the results. Here
we evaluate the proposed pipeline on the dataset with
the largest class imbalance (i.e., Seafloor), since efficient
handling of skewed class distributions is an important con-
sideration when interpreting natural environment datasets.

4.3.1 CNN Architecture Comparison (B1-B8)

The proposed LGA-SS training method can be applied to
any CNN architecture. Here, we investigate the impact of
using three well established CNN architectures on classi-
fication accuracy: AlexNet, ResNet18 and ResNet152 [23].
The accuracy of each configuration is evaluated based on
the mean F1-score (macro-average).

Each CNN is pre-trained using ImageNet, where exper-
iments are performed with all layers and only last layer
training on the dataset following the network-based transfer
learning process described in [37]. Since AlexNet is used
as the basic architecture of the LGA implemented in this
work, the LGA’s encoder can be regarded as an AlexNet
classifier where the weight values have been optimised
to describe all the available images in the target dataset
through latent representation learning. The performance
of the LGA pre-trained CNN is compared to traditional
ImageNet pre-trained CNNs to assess the effectiveness of
embedding georeference information using the LGA.

The following parameters are experimentally deter-
mined to achieve the best performance with each CNN
architecture: Mini-batch sizes of 128 samples are used for
AlexNet (all layer and final layer training) and ResNet18 (all
layer training), 32 for ResNet18 (final layer training) and 16
for ResNet152, Adam [62] is used as the optimiser and the
learning rate is set to 1e-5 except for ResNet18 (final layer
training) where it is set to 1e-4, and the number of training
epochs is 50 for all configurations.

TABLE 3 shows the results for configuration B1 to B8. As
expected, the accuracy improves when a larger number of
annotations are used to train each CNN architecture. Over-
all, B4, which corresponds to AlexNet pre-trained using the
LGA where only the last layer is trained on the dataset,
shows the best performance except for when M = 40 and
9370. The performance gap between B4 and B8, where all
the layers are trained on the dataset, is potentially caused
by overfitting due to high model flexibility of B8. Though B8
outperforms B4 for M = 40, the difference in performance
here is marginal. B8 shows a similar level of accuracy to
B5, where ImageNet is used for pre-training instead of the
LGA, indicating that the advantage of LGA pre-training is
lost when all the layers are trained. The fact that B4 gen-
erally outperforms these configurations demonstrates the
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TABLE 2: F1-Score (Macro-Average) Mean and SD (%) of the Classification Result with Conventional Classifiers on Aerial
Datasets (Mountain/Island/Urban Dataset)

Config.
Label

Feature
Learning

Data
Selection

Classifier
Number of Annotations (M )

20 40 100 200 400 1000 7500
A’1 LGA random 1-NN 43.8±4.2 49.3±3.0 53.4±2.4 55.4±1.5 57.6±0.9 59.4±0.8 62.1±0.4

42.0/45.3/44.0 49.6/47.9/50.4 54.5/50.9/54.8 56.8/52.5/57.0 60.3/53.7/58.8 63.0/55.0/60.3 66.9/56.4/63.0
A’2 RF 42.7±6.2 49.4±5.0 55.8±3.2 57.9±2.3 60.8±1.2 63.3±0.9 66.6±0.3

39.0/45.4/43.8 48.5/49.0/50.7 55.8/53.2/58.4 59.0/53.2/61.5 63.2/55.1/64.2 66.6/56.8/66.4 71.2/58.8/69.8
A’3 L-SVM 46.3±4.5 52.1±3.6 58.6±2.3 61.1±1.4 63.3±1.0 65.3±0.5 66.9±0.4

45.6/46.8/46.4 52.5/50.2/53.6 60.3/55.5/59.9 62.7/58.2/62.5 65.0/59.7/65.4 66.7/61.9/67.3 68.1/63.4/69.2
A’4 R-SVM 42.8±4.7 51.1±3.5 58.5±2.2 61.4±1.4 63.8±1.0 65.7±0.5 69.0±0.3

39.0/46.7/42.8 50.4/51.3/51.6 59.8/55.9/59.9 62.9/58.5/62.8 65.6/60.3/65.3 67.5/62.3/67.4 70.7/65.3/70.9
A’5 GP 44.0±4.1 50.1±3.2 55.1±2.7 57.6±2.0 60.5±1.3 63.2±1.0 68.1±0.4

42.9/45.1/44.0 51.4/48.0/50.9 56.5/51.9/57.0 59.0/52.7/60.9 63.5/54.4/63.7 67.2/56.1/66.3 72.9/60.5/70.8
A’6 k means 1-NN 47.1±4.3 51.1±2.4 54.0±2.1 55.9±1.4 57.1±1.1 59.0±0.7 61.7±0.4

46.5/47.4/47.4 53.3/49.7/50.3 56.6/50.3/55.1 58.9/52.0/56.9 60.7/53.0/57.8 62.3/54.4/60.3 66.3/56.2/62.7
A’7 RF 45.3±5.7 51.4±3.0 56.0±1.9 58.4±1.7 60.6±1.2 63.1±0.9 66.4±0.4

42.8/47.9/45.1 51.5/50.9/51.8 57.0/52.4/58.5 59.9/54.0/61.2 63.3/55.0/63.6 66.2/56.9/66.3 71.2/58.7/69.3
A’8 L-SVM 49.1±4.5 54.4±2.3 58.6±1.9 61.4±1.3 63.3±1.0 64.8±1.0 66.4±0.4

47.3/50.0/50.0 56.1/52.1/54.9 60.9/54.7/60.1 63.7/57.3/63.2 65.4/59.6/65.1 66.5/60.6/67.4 68.0/62.3/69.0
A’9 R-SVM 45.6±4.6 53.4±3.5 58.0±2.5 61.3±1.4 63.3±1.1 65.2±0.9 68.3±0.5

42.9/48.3/45.7 53.9/53.3/52.9 59.2/55.2/59.5 63.1/57.6/63.1 65.9/58.8/65.1 67.2/60.8/67.6 70.6/63.6/70.8
A’10 GP 47.6±4.4 51.9±3.0 56.1±1.8 58.5±1.7 60.4±1.2 63.0±0.8 67.7±0.4

47.4/48.1/47.4 53.9/50.8/51.0 58.6/51.8/57.9 61.0/53.8/60.6 63.3/54.5/63.4 66.3/56.4/66.4 72.5/60.1/70.5
A’11 H-k means 1-NN 50.7±3.0 52.7±2.4 56.6±1.6 58.2±1.1 59.1±0.7 60.3±0.6 62.4±0.4

50.8/49.9/51.4 55.8/49.2/52.9 60.9/51.3/57.5 61.6/53.9/59.1 63.5/53.8/60.0 64.5/54.8/61.4 67.4/56.4/63.3
A’12 RF 49.0±3.6 52.4±2.9 57.9±1.7 59.9±1.7 62.1±1.2 63.8±0.7 66.9±0.4

47.1/49.3/50.7 51.5/52.1/53.6 59.3/54.3/60.0 60.4/56.6/62.8 64.8/56.7/64.6 67.7/56.9/66.7 72.3/58.9/69.6
A’13 L-SVM 51.8±3.1 55.0±2.2 59.8±1.6 61.8±1.4 63.2±0.8 65.0±0.7 67.1±0.3

52.5/50.2/52.7 58.0/50.5/56.4 63.0/54.1/62.3 65.0/57.2/63.1 65.9/58.7/65.0 66.9/61.0/67.0 69.0/63.5/68.9
A’14 R-SVM 50.8±3.3 53.8±2.4 59.3±1.9 61.9±1.3 63.5±0.7 65.5±0.5 69.3±0.3

51.4/52.1/48.9 55.5/52.5/53.5 62.0/54.4/61.5 64.8/57.5/63.3 66.8/58.4/65.4 68.1/61.0/67.4 71.5/65.4/70.9
A’15 GP 50.9±3.1 53.6±2.6 58.2±2.0 60.5±1.8 62.5±1.2 64.1±0.7 68.2±0.4

51.0/50.1/51.7 56.1/50.7/54.0 61.7/53.1/60.0 63.0/55.8/62.8 66.0/56.3/65.0 68.3/57.0/67.0 73.4/60.6/70.8
A’16 Auto- H-k means 1-NN 45.5±3.2 48.0±2.3 51.8±1.8 53.0±1.2 53.6±0.8 54.8±0.7 57.2±0.3

encoder 47.6/44.3/44.5 54.6/44.9/44.5 58.2/47.5/49.7 57.8/49.1/52.2 58.7/49.3/52.8 59.5/50.8/54.2 62.2/52.5/56.7
A’17 RF 44.8±3.3 48.3±2.8 51.7±2.1 54.6±1.1 55.9±0.9 58.1±0.6 61.5±0.4

44.3/47.3/42.7 54.0/46.6/44.3 55.8/48.7/50.6 58.3/51.1/54.4 58.9/52.1/56.8 61.4/53.3/59.7 65.7/54.6/64.3
A’18 L-SVM 47.5±2.7 49.4±3.2 53.6±2.1 54.7±1.4 56.4±1.3 58.5±1.5 62.7±0.4

49.5/46.2/46.7 52.7/48.1/47.4 57.9/51.0/52.0 57.0/51.3/55.6 58.2/53.5/57.4 58.9/56.2/60.5 66.1/59.1/62.9
A’19 R-SVM 46.8±3.5 49.6±3.3 53.6±2.0 55.3±1.6 57.8±1.1 60.2±1.6 65.2±0.3

50.0/45.9/44.6 52.7/49.2/47.0 57.0/51.4/52.6 57.6/53.5/54.8 60.9/55.1/57.5 63.2/57.4/60.0 68.8/61.1/65.6
A’20 GP 46.4±3.4 49.1±2.6 52.6±1.8 55.0±1.3 56.3±1.0 58.4±0.5 62.7±0.5

48.1/46.0/45.1 55.9/46.5/44.9 56.9/49.5/51.4 58.4/51.5/55.1 59.3/52.5/57.3 61.3/53.5/60.4 67.2/55.6/65.4

The standard deviation values shown are the mean values of the standard deviations calculated for the three datasets.

advantage of embedding georeference information through
LGA pre-training using the target dataset. When M = 9370,
B6, corresponding to the case where all the layers of an
ImageNet pre-trained ResNet18 are trained on the dataset,
shows the best accuracy. This suggests that ResNet18’s
deeper architecture and use of residual blocks allows for
better performance than AlexNet when a sufficient number
of training examples is available. However, B4 is the best
option overall for M ≤ 1000, which is significant for this
study since we are interested in efficient training with a
small number of annotated examples.

The comparison between B1 to B3 (last layer only) and
B5 to B7 (all layer) indicates that training only the last
layer limits the performance of each architecture for large
values of M , indicating that there is a significant difference
between the low-level and mid-level features of ImageNet
and the environmental monitoring dataset. In the proposed
pipeline, the number of training examples can be considered
large due to the use of pseudo-labels. Therefore, we choose

to investigate B6 as it demonstrate the best capacity for
learning among B1 to B8, and we also examine B4 since
it is the most efficient learner for M ≤ 1000.

4.3.2 Active Learning Comparison (C1-C12)
Active learning methods attempt to improve learning ef-
ficiency by training classifiers on a subset of annotated
samples, and proposing which samples should be annotated
next based on their prediction uncertainty [33]. CNNs are
well suited to this iterative process of prediction and pri-
oritised annotation as their outputs are already conditional
probabilities against labels and so uncertainty metrics can
be easily derived. Common strategies for uncertainty based
prioritisation include Least Confidence (LC) sampling, mar-
gin sampling and entropy based sampling, all of which have
previously been demonstrated to be effective for environ-
mental monitoring applications [32].

Conventional active learning starts the iterative train-
ing process with a randomly selected subset of samples.
However, its performance is sensitive to this initial selection
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TABLE 3: F1-Score (Macro-Average) Mean and SD (%) of the Classification Result with CNN Trained by Standard
Supervised Learning (Section 4.3.1), Active Learning (Section 4.3.2) and the Proposed Pipeline (Section 4.3.3).

Config.
Label CNN Pre-

training
Trained
Layer

Data
Selection

Number of Annotations (M )
20 40 100 200 400 1000 9370

B1 AN IN last random 36.6±5.1 38.0±7.1 50.2±5.8 57.7±1.5 59.4±1.7 59.7±1.1 60.5±0.9
B2 RN18 IN last random 36.3±6.4 42.3±3.8 48.3±5.2 53.4±5.5 57.7±2.6 60.3±2.7 62.8±0.7
B3 RN152 IN last random 34.9±7.0 43.4±5.0 49.7±6.6 54.2±3.8 58.4±2.4 58.8±2.6 61.4±1.1
B4 AN LGA last random 39.2±7.4 43.2±6.3 51.2±5.3 58.3±1.9 62.0±2.5 65.8±0.9 67.7±0.7
B5 AN IN all random 31.1±7.5 39.2±6.7 48.1±5.9 53.8±3.8 57.3±2.2 60.5±2.0 68.6±0.7
B6 RN18 IN all random 34.1±7.0 38.5±9.9 50.7±6.4 54.9±5.1 58.5±3.1 61.9±1.1 69.4±0.6
B7 RN152 IN all random 35.3±6.4 38.2±8.2 50.3±5.8 51.7±3.3 57.5±2.0 59.1±1.8 64.9±1.1
B8 AN LGA all random 32.9±7.0 44.6±4.0 44.9±5.8 54.7±3.5 57.7±2.7 60.1±1.4 66.3±0.9
C1 AN LGA last random+LC 30.5±6.2 34.9±6.7 47.2±6.6 57.0±3.8 62.0±1.8 63.7±0.8 65.5±1.1
C2 AN LGA last random+margin 32.9±5.6 40.3±4.4 49.6±9.1 55.8±7.4 60.5±2.3 61.8±1.4 64.8±1.5
C3 AN LGA last random+entropy 36.9±7.9 41.3±8.7 53.4±4.9 58.5±3.5 62.0±1.5 63.7±1.3 66.2±0.5
C4 AN LGA last k means+LC 49.6±4.7 53.7±5.4 56.5±4.3 59.6±2.0 62.2±1.8 62.8±1.5 65.6±1.0
C5 AN LGA last k means+margin 48.9±4.2 52.5±2.7 56.3±2.7 57.8±1.9 60.5±1.2 61.7±1.4 64.2±1.4
C6 AN LGA last k means+entropy 46.6±5.2 49.8±5.4 55.7±3.4 58.3±3.4 62.5±1.3 63.3±1.2 65.6±0.6
C7 RN18 IN all random+LC 33.4±7.8 43.4±6.7 53.1±4.5 56.8±2.2 58.6±1.2 59.4±0.9 63.5±0.7
C8 RN18 IN all random+margin 38.2±4.2 42.9±6.4 52.8±5.8 54.3±2.9 57.3±2.0 58.2±1.8 63.9±0.5
C9 RN18 IN all random+entropy 35.9±6.5 47.7±6.2 55.2±2.1 56.2±3.7 57.6±1.8 59.1±1.3 63.6±0.8

C10 RN18 IN all k means+LC 50.3±5.7 53.5±4.8 56.3±2.0 56.4±2.3 59.1±1.3 59.5±1.4 64.0±0.9
C11 RN18 IN all k means+margin 49.1±6.2 50.8±6.1 53.4±4.9 54.5±2.9 57.3±1.1 58.5±1.0 63.7±0.5
C12 RN18 IN all k means+entropy 49.2±7.0 52.1±5.7 55.4±2.9 57.5±2.9 59.0±2.1 60.3±1.3 63.6±0.7
D1 AN LGA last k means 43.6±4.0 51.4±4.8 56.7±2.9 60.9±2.0 64.5±1.0 66.0±0.9 67.7±0.7
D2 AN LGA last H-k means 44.9±6.4 53.2±4.2 58.1±2.2 61.5±1.8 64.4±1.1 66.9±0.8 67.7±0.7
D3 AN LGA last H-k means+PL 50.4±8.3 57.8±3.0 60.4±2.6 62.8±1.0 62.7±1.2 64.7±0.8 67.7±0.7
D4 AN LGA last H-k means+PPL 31.3±2.7 40.1±2.8 52.0±2.6 57.2±1.6 62.3±0.9 65.4±0.8 67.7±0.7
D5 RN18 IN all k means 45.5±8.0 49.6±7.2 55.4±3.9 57.2±2.3 59.5±1.6 62.0±1.1 69.4±0.6
D6 RN18 IN all H-k means 44.7±8.1 53.0±5.3 57.9±1.9 59.3±1.7 59.2±2.7 62.1±1.5 69.4±0.6
D7 RN18 IN all H-k means+PL 51.9±7.6 59.1±2.7 60.4±2.4 62.9±0.7 64.2±1.0 64.8±0.8 69.4±0.6
D8 RN18 IN all H-k means+PPL 46.2±3.2 51.2±2.5 55.1±2.4 58.9±1.3 52.3±1.5 66.4±1.1 69.4±0.6

The proposed method (D3 and D7) outperforms other configurations when M ≤ 200. When M = 9370, all available training
images are used making the selection strategy irrelevant. Bold and bold italics indicate the best and next best performer for each
value of M .

and so we investigate whether an initial selection of sam-
ples nearest to the centroids of the k means clusters in the
LGA latent space improves their performance. Subsequent
batches of samples (20 when M ≤ 1000 or 1000 when
M > 1000) are selected based on the active learning query
strategies and iteratively added to the subset of annotated
samples for training. A training epoch of 10 was chosen
so that the total number of epochs is comparable to the
standard supervised learning results (B1-8) and proposed
methods (D1-D8).

In our experiment, we assess two different CNN archi-
tectures (AlexNet and ResNet18), and compare the perfor-
mance of three well established active learning iterative
sampling techniques (LC sampling, margin sampling and
entropy based sampling). The active learning process is
initialised using two different initial subset selection meth-
ods; first where the initial subset is randomly sampled
(corresponding to traditional active learning workflows),
and second where active learning initialised by a k means
centroid based sample initialisation (taking advantage of the
georeference embedded latent representations learnt during
LGA pre-training).

Configuration C1 to C12 in TABLE 3 show the accu-
racy scores for CNNs trained using the different configu-
rations for active learning. Comparing the LGA pre-trained
AlexNet configurations (C1 to C3) with their transfer learn-
ing counterpart (B4) shows that the active learning reduces
accuracy. However, for ResNet18, the accuracy increases
when active learning is applied (B6 and C7 to C9) for small

values of M < 1000. It is noticeable that for larger M (par-
ticularly M = 9370), active learning degrades performance,
possibly due to overfitting of CNN weights at an early
phase of the iterative learning process trapping them in local
minima. This is because the CNN is trained sequentially
on discrete subsets of data, where the stored weights are
used to initialise the optimisation of the next subset to limit
the total number of training epochs required [63]. Although
overfitting is potentially mitigated by resetting the CNN
weights between each training subset [64], this requires a
large number of training epochs, making it impractical for
use in domains that require per-dataset training.

The use of the LGA k means centroids for initial sample
selection significantly improves performance (C4 to C6 and
C10 to C12), where the gains are largest for small numbers of
training examples, i.e., M ≤ 100. Although this advantage is
lost as M increases, it does not cause any significant degra-
dation in performance compared with the random initial
subset selection. The difference between the active learning
strategies is marginal for both the random and k means
initial selection. Although different hyperparameters (e.g.,
number of epochs for each iteration) may improve active
learning performance, optimisation of these is outside the
scope of this work since there are no systematic methods
available to determine them.

4.3.3 Data Selection Strategy Comparison (D1-D8)
Four data selection strategies; k means, hierarchical k means,
and hierarchical k means with pseudo-labelling or prob-
abilistic pseudo-labelling, are validated in this section.
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(a) Annotations (M ) vs F1 (macro-average) mean for the
Seafloor Dataset

(b) Annotations (M ) vs F1 (macro-average) means averaged
over the Mountain, Island and Urban Aerial Datasets

Fig. 3: Comparison of classification performance investigated in section 4. Mean of F1 (macro-average) values against
each M are shown. Representative configurations are chosen from TABLE 1 and 3 for Fig. 3a and TABLE 2 for Fig.3b.
The proposed georeference embedded sample selection method improves performance for all the datasets analysed in our
experiments. Larger gains in learning efficiency are achieved in datasets that have a more heavily skewed class distribution.

The previous section already confirmed that hierarchical
k means based data selection is effective for small values of
M when combined with conventional non-CNN classifiers.
In order to allow for fair comparison, the number of training
samples used by the CNN at each training epoch is fixed
to the total number of available labelled training image
patches (i.e., 9370 in this experiment). For configurations
where all available labelled image patches are used in the
training (i.e., all pseudo-label and probabilistic pseudo-label
configurations and where M = 9370 without pseudo or
probabilistic pseudo-labelling), each original labelled train-
ing image patch is used once, and these samples are individ-
ually subjected to data augmentations that randomise orien-
tations, flipping and position offsets at each training epoch
before being used by the CNN. For configurations where
the number of labelled image patches used in the training
is less than available labelled training image patches (i.e.,
M < 9370 with no pseudo or probabilistic pseudo labels),
the selected original images are sampled multiple times (i.e.,
approximately 9370/M times) so that a fixed number of
labelled training samples are provided to the CNN, where
each sample is subjected to random data augmentation
before being used by the CNN at each training epoch. In
[51], pseudo-labels are determined by the k means cluster-
ing results, corresponding to 1-NN in TABLE 1. However,
TABLE 1 shows that R-SVM consistently estimates better
class decision boundaries, and so will be used to assign
predictive pseudo-labels in this work. Although the GP
classifier described in section 3.4 did not perform as well
as the R-SVM, the prediction uncertainty may be useful for
CNN training and so experiments are also performed using
these outputs as probabilistic pseudo-labels.

Configuration D1 to D4 in TABLE 3 shows the perfor-
mance metrics for each data selection strategy with the LGA
pre-trained AlexNet CNN with last layer supervised train-
ing. D5 to D8 show the same comparison for ImageNet pre-
trained ResNet18 CNN with all layer supervised training,

where these base configurations where chosen since they
performed best in our CNN architecture comparison (B4
and B6 in section 4.3.1). For both AlexNet and ResNet18, the
combination of hierarchical k means and pseudo-labelling
achieves the best performance for M ≤ 200. Comparing the
cases with pseudo-labelling (D3 and D7) to the cases with-
out (D2 and D6) shows that pseudo-labelling consistently
improves classification performance. D7, which applies hi-
erarchical k means and pseudo-labelling to ResNet18, per-
forms the best for M ≤ 200 among all the configurations
in TABLE 3. The accuracies achieved by D7 with M = 20,
40, 100 are similar to the metrics achieved for B1 to B4 with
M = 200, 400, 1000, which have an order of magnitude
more annotations. In particular, B6 and D7 use the same
CNN architecture, showing that gains in learning efficiency
can be attributed to the LGA-SS training method, resulting
in a significant reduction in human effort to achieve a
similar level of classification accuracy. Although the effi-
ciency gains diminish as the number of human annotations
available for training increases, the LGA-SS method never
degrades the CNN’s performance for an equal number of
annotations. Another way to look at this is that the largest
gains in learning efficiency are achieved when there is only a
small amount of human effort available for annotation tasks,
where D7 with 40 prioritised annotations reaches 85 % of the
accuracy achieved by the best performing supervised CNN,
B6, trained using 9370 human annotations, which represents
just 0.4 % of the human effort. The data also shows that the
combination of hierarchical k means and pseudo-labelling
improves the repeatability between experiments under the
same conditions, which is an important attribute for practi-
cal application of automated data interpretation.

Probabilistic pseudo-labelling outperforms pseudo-
labelling only when M = 1000. This indicates that mean-
ingful probabilistic expression of pseudo-labels can only
be taken advantage of when a relatively large number of
annotations are available. On the other hand D2, where
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pseudo-labelling is not applied, shows the best accuracy for
M = 1000, and similarly D1 shows the best performance
for M = 400 with D2 following it. This trend suggests that
LGA pre-trained AlexNet is effective at describing the class
boundaries when a sufficient number of annotated examples
can be provided for fine-tuning. The equivalent training
approach for D5 and D6 does not show this behaviour,
indicating that this is a particular feature of using the
LGA pre-trained network. The advantages of the proposed
method with hierarchical k means for prioritised sample
annotation and pseudo-labelling using R-SVM is significant
for M ≤ 200 for both CNN architectures (i.e., D3 and D7).

4.4 CNN and Conventional Classifier Comparison

Fig. 3 compares the performance metrics of several represen-
tative configurations in TABLE 1, 2 and 3. The result under
configuration A14 are shown as this is the best performing
conventional (i.e., non-CNN) classifier. For the CNN classi-
fiers, configurations B4, B6, C7, C10, D3 and D7 are shown
to demonstrate the effectiveness of the proposed pipeline
compared to other data selection strategies (random selec-
tion and active learning) in Fig. 3a. Fig. 3b shows that the
proposed LGA and H-k means based training data selection
is also effective on the aerial datasets. The performance
gains achieved here are is less than for the Seafloor dataset,
where this is thought to be due to the more skewed class
distribution in the Seafloor dataset (see Fig. 2), since the H-
k means selection strategy is most effective when dealing
with imbalanced classes.

Overall, the CNNs trained with proposed pipeline (D3
and D7) outperform the conventional classifier (A14) and
the best performing CNN trained using active learning (C7
and C10), except for M = 1000. The outputs of the A14
form the inputs to train D3, where the same LGA is used
for pre-training the AlexNet CNN. The improvement in
performance shows that the CNN does not merely repli-
cate the class boundaries found in the annotations and the
pseudo-labels, but learns new boundaries that discriminate
the classes more accurately. ResNet18 (D7) shows better per-
formance than AlexNet (D3) when trained using the same
outputs of A14, indicating an ability to more accurately
model complex class boundaries. This was generally the
case for all random selected training data and the proposed
pipeline. Comparing M = 1000 and M = 9370, the con-
ventional classifier’s accuracy is not significantly improved
even though almost 10 times the number of annotations are
used for training. On the other hand, the CNNs achieves sta-
tistically significant increases from M = 1000 to M = 9370
in all cases. This supports the common understanding that
deep learning CNNs are a better option than conventional
classifiers when large training datasets are available, and
that conventional classifiers are a reasonable option when
only a small number of annotations are available for train-
ing.

Active learning (C7 and C10) benefits from LGA based
k means initialisation (C10), and shows better accuracy than
standard training (B4 and B6) for small M , but the perfor-
mance degrades when M is large due to overfitting as dis-
cussed previously. The proposed pipeline with prioritised
annotation and pseudo-labelling significantly outperforms

active learning for all M and both CNN architectures (D3,
D7). Pseudo-labelling is more robust to overfitting than
active learning since variability within the dataset is fully
represented as all the available images are used for training.

Other factors that are important for practical application
include the computational cost and the requirements for hu-
man input. Compared with CNNs, conventional classifiers
require less time for training once LGA latent representa-
tions are generated and annotations have been made. In
active learning, the three main steps i.e., training with an-
notated samples, inference for prioritising samples without
annotations and annotating by humans, need to be repeated
in sequence. This results in a large computational cost and
also leads to inefficiencies as human annotators are forced
to work around classifier retraining at each iteration. On the
other hand, the time investment needed for the proposed
pipeline is similar to conventional CNN training, since the
unsupervised training and LGA based sample prioritisation
do not require any human input, and the computation time
for predicting pseudo-labels is negligible.

4.5 Per-class Performance

So far the macro-averaged F1 score has been used as a metric
to compare the overall performance of different classifiers.
This is appropriate when we assume all classes in a dataset
are of equal importance. However, there are applications
where this is not the case, and in these scenarios it is
more valuable to consider performance on a per-class basis.
Figs. 4 and 5 compare the per-class confusion matrices for
M values of 20, 40, 100 and 1000 for configurations B2
and D7. These represent the outputs of the best performing
network, ResNet18, trained using standard transfer learning
and the proposed LGA-SS pipeline, respectively. The values
in each confusion matrix are normalised by the number
of ground truth annotations so that the diagonal elements
correspond to the recall value of each class. The confusion
matrices corresponding to the trials with the closest F1 score
(macro-average) to the mean of ten repetitions (TABLE 3)
are chosen for each value of M . The values of zeros for
M = 20 and 40 in Fig. 4 suggest no images corresponding to
‘Artificial Object’ were selected in the random selection used
for training and so predictions could not be made effectively
for this class. On the other hand, Fig. 5 shows that all 6
classes in the dataset are predicted for all M , illustrating
the advantage of using hierarchical k means based data
selection to avoid minor classes from being overlooked even
when the total number of annotated images is small.

Comparing the habitat maps generated using the clas-
sification results to the ground truth annotations (Fig. 2a)
shows that the random data selection (Fig. 4) requires a
larger number of training samples M to capture the different
spatial distribution patterns of each class. Using the pro-
posed LGA-SS training method (Fig. 5) results in more con-
sistent per-class performance, providing a better approxima-
tion of the ground truth class distribution patterns even for
small values of M . The consistent performance for different
numbers of input training data is an important attribute for
practical application since the annotation resource available
for different datasets is likely to vary. These points favour
the proposed method over random sampling approaches
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M = 20 M = 40 M = 100 M = 1000

Fig. 4: Confusion matrices and habitat maps predicted by ResNet18 trained using the random data selection (configuration
B6 in TABLE 3). This corresponds to conventional good practise, using a CNN pre-trained on the ImageNet annotation
dataset and fine-tuning all the layers using randomly sampled annotated images with data augmentation. The results show
that for a values of M = 20 the ‘Artificial Object’ and ‘Bacterial Mat’ class that contain the fewest samples are not efficiently
learned, and even for M = 40, ‘Artificial Object’ is not recognised. The confusion matrix shows that even with M = 1000,
there is still significant confusion when classifying ‘Carbonate’ and ‘Shell Fragment’.

M = 20 M = 40 M = 100 M = 1000

Fig. 5: Confusion matrices and habitat maps predicted by ResNet18 trained using the proposed LGA-SS method with
hierarchical k means based data selection and pseudo-labelling (configuration D7 in TABLE 3). Compared to Fig. 4, the
results show improved learning efficiency, especially for small values of M , where both the ‘Artificial Object’ and ‘Bacterial
Mat’ classes are efficiently learned using just 20 human annotations, despite these being rare classes with a small number
of data samples. The performance with M = 100 shows similar performance to when the same CNN architecture is trained
using an order of magnitude more annotations from randomly selected data (i.e Fig. 4).
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that are more sensitive to the number of available annota-
tions, and require larger amounts of training data to achieve
similar performance.

5 CONCLUSION

This paper proposes a novel semi-supervised learning
pipeline to classify georeferenced imagery using deep learn-
ing CNNs. The main advantage of the proposed LGA-SS
method is that it can interpret images according to class
boundaries of interest for environmental monitoring more
efficiently than the alternative methods tested in this work,
requiring less human effort and achieving better accuracy.
The method is designed for per-dataset training in order
to achieve high performance with a realistic investment of
human effort for practical application. Experiments on four
georeferenced image datasets spanning aerial and seafloor
environments show that the proposed georeference embed-
ding and sample selection methods are effective across ap-
plication domains, achieving the largest gains in efficiency
are achieved on datasets that have highly skewed class
distributions, which are a common feature in environmental
monitoring applications. Other relevant advantages include
reduced variability between multiple end-to-end training
and classification runs under the same configurations, and
more consistent performance with different sizes of input
training data compared to traditional naive (i.e., random
sampling) based transfer learning methods. These proper-
ties make the LGA-SS method suitable for use in domains
where there is limited transfer of learning between datasets.
Our results demonstrate that:

• The proposed LGA-SS can achieve classification ac-
curacy equivalent to naively trained CNNs with
an order of magnitude fewer human annotations
(i.e., tens to hundreds, as opposed to thousands).
The results demonstrate improvements in accuracy
by a factor of 1.2 to 1.5 when a hundred or less
annotations are used, where the largest gains in
learning efficiency are achieved with small numbers
of annotations. The method also reduces the statisti-
cal variability between independent trials under the
same learning configurations to approximately 0.6 of
that when random sampling is used. The proposed
method reaches 85 % of the accuracy achieved by the
best performing naively trained CNN (trained using
9370 human annotations) with just 40 prioritised
annotations, which represents 0.4 % of the human
effort.

• The strategy to select data for human annotation
affects final classification performance. On the four
datasets, introducing structure to prioritise annota-
tion effort using hierarchical k means in the latent
representation shows an average of 1.12 times im-
provement, and leveraging LGA instead of an au-
toencoder with the same CNN architecture achieved
1.23 times higher accuracy in terms of R-SVM clas-
sification results when the number of annotations is
less than 100. A similar gain in performance is seen
when the LGA based k means selection is used to
initialise active learning, with a 1.25 factor improve-

ment compared to equivalent randomly initialised
active learning setups.

• The proposed method makes more efficient use of
human effort than traditional active learning based
techniques tested in this work, and is less prone to
overfitting, achieving a factor 1.12 and 1.22 improve-
ment in performance for AlexNet and ResNet18 re-
spectively when compared to randomly initialised
active learning across all values of M .

• CNN architectures are able to generalise class bound-
aries of interest to humans even when pseudo-labels
are assigned to all data in a training set. The resulting
CNN is able to improve the relative classification
accuracy by an average of 6.4 % compared to the clas-
sification accuracy of the pseudo-labels themselves.

• The performance of conventional classifiers for
pseudo-label generation is significantly improved
using k means based selection compared to random
selection when generating subsets of data for anno-
tation. A factor of 1.30 improvement in classification
accuracy is achieved for prioritised subsets with a
hundred samples or less.

• Implementation of annotation effort prioritisation
strategies relies on effective unsupervised clustering
performance for seafloor images, where the use of
georeferencing information by the LGA compared to
an equivalent autoencoder that only uses informa-
tion in images resulted in an improvement in classi-
fication accuracy by a factor of 1.4 to 8.9 (average 3.1)
for the configurations tested in this work.
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