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Absorption, scattering, and color distortion are three major degradation factors in underwater optical imaging.
Light rays are absorbed while passing through water, and absorption rates depend on the wavelength of the light.
Scattering is caused by large suspended particles, which are always observed in an underwater environment. Color
distortion occurs because the attenuation ratio is inversely proportional to the wavelength of light when light
passes through a unit length in water. Consequently, underwater images are dark, low contrast, and dominated by
a bluish tone. In this paper, we propose a novel underwater imaging model that compensates for the attenuation
discrepancy along the propagation path. In addition, we develop a robust color lines-based ambient light esti-
mator and a locally adaptive filtering algorithm for enhancing underwater images in shallow oceans. Furthermore,
we propose a spectral characteristic-based color correction algorithm to recover the distorted color. The enhanced
images have a reasonable noise level after the illumination compensation in the dark regions, and demonstrate an
improved global contrast by which the finest details and edges are enhanced significantly. © 2015 Optical Society

of America

OCIS codes: (100.2980) Image enhancement; (110.0113) Imaging through turbid media.
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1. INTRODUCTION

Currently, autonomous underwater vehicles (AUVs) and
remotely operated vehicles (ROVs) are commonly used for
underwater object recognition. In the past two decades, sonar
has been widely used to detect and recognize objects in under-
water environments. However, for short-range object recogni-
tion, vision sensors must be used instead of sonar because sonar
yields low-quality images [1].

In underwater observation, large suspended particles in tur-
bid water cause scattering. The underwater optical images thus
suffer from poor visibility because of the medium. Additionally,
color distortion occurs because different wavelengths are attenu-
ated to different degrees in water. Consequently, captured
images of underwater environments are dominated by a bluish
tone. The absorption of light in water substantially reduces its
intensity. In fact, objects at distances of more than 10m from the
camera are almost indistinguishable [2].

Research in this field has long focused on color correction
and descattering methods. Schettini and Corchs [2] reviewed
methods for image enhancement and restoration, as well as
subjective and quantitative assessment indices. Integrated color
models were proposed for hyper-spectral correction in [3].
These models typically involve multi-step approaches that
use color histogram stretching and color correction to account

for varying depths and the use of natural or artificial lighting.
Distance-based contrast and color degradation models have
recently been generated for turbidity images to recover under-
water scenes [4–7].

In this paper, we focus on a single image enhancement
method. Single image enhancement is a challenging, but ill-
posed problem. The obtained brightness of each pixel depends
on the observed scene point radiance, scattering, attenuation,
and ambient illumination. In reviewing recent studies, we
found that research related to underwater image enhancement
can be classified into the following six main categories.

(1) Polarization: Schechner and Karpel [8] restored images
taken at significantly varied scene distances by using a polari-
zation filter attached to a camera. A distance map of the scene
was obtained by capturing two polarized images from different
angles. Liang et al. [9] proposed a Stokes matrix-based four-
angle rotation polarization filter to remove haze. However,
these methods cannot attenuate the transmission of radiance
through polarization filters or multiple exposures, especially
for time variations that are adverse to visibility and illumination
conditions.

(2) Turbidity medium: Narasimhan and Nayar [10]
and Cozman and Krotkov [11] analyzed a static scene by
obtaining multiple images under different visibility conditions.
Although they reported impressive results, a static camera and a
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significant change in media turbidity were required under con-
stant illumination conditions.

(3) Multi-lighting: Narasimham et al. [4] and Tsiotsios
et al. [12] proposed the use of multiple lights to estimate the
backscatter from a scene. Treibitz and Schechner [13] proposed
fusing images obtained using two-directional illumination to
create a single clearer image. However, it is difficult to recover
the time variations adverse to visibility in the presence of float-
ing turbidity sediments.

(4) Scene depth: Studies have calculated scene depth to
solve the ambiguities in the visibility enhancement problem
[14,15]. These works made assumptions about the scene that ne-
cessitate either manual inputs or special structures. Generating
this information is difficult in water.

(5) Fusion: Ancuti et al. [16] combined the Laplacian con-
trast, contrast, saliency, and exposure features of white-
balanced and color-corrected images. They then utilized the
exposure fusion algorithm to obtain the final result. However,
several results were color shifted because of the exposure process;
selecting the exposed images is difficult.

(6) Prior: Fattal [17] estimated scene radiance and derived
a transmission image using single-image statistics. He et al. [18]
analyzed numerous natural sky images and determined that
most color images contain a dark channel. On the basis of this
finding, they proposed a dark channel prior dehazing algo-
rithm. The subsequent image enhancement resulted in regional
contrast stretching that could cause halos or aliasing. Moreover,
the dark channel assumption is based on natural outdoor image
statics that might not hold in arbitrary underwater scenes.

In underwater environments, captured images are signifi-
cantly influenced by the medium [19]. In the present paper,
we propose a novel shallow ocean imaging model and a corre-
sponding enhancement algorithm. First, we propose a robust
color line to estimate the ambient light. Next, we estimate
the transmission through an underwater median dark channel
prior (UMDCP). After that, we develop a locally adaptive cross
filter (LACF) to remove the scatter. Finally, color correction is
performed according to the spectral properties.

2. UNDERWATER LIGHT PROPAGATION
MODEL

Artificial and atmospheric light are sources of illumination in a
shallow ocean environment. Suppose the intensity of light at
point x is W . The illumination can be formulated using the
energy attenuation model as follows:

Ec
W �x� � Ec

L�x� � Ec
A�x�; c ∈ fr; g; bg; (1)

where Ec
W �x� is the amount of illumination, Ec

A�x� is the
amount of illumination of atmospheric light at point x,
Ec
L�x� is the illumination of artificial light at point x, and

N rer is the normalized residual energy ratio [20]. In turbid
water, N rer has the following values:

N rer�c��
(
0.75∼0.85 if λ�650∼750 μm�red�
0.86∼0.95 if λ�490∼550 μm�green�
0.95∼0.99 if λ�400∼490 μm�blue�.

(2)

We assume the distance between the artificial light and the
object is d �x�, and D�x� is the underwater scene depth.
Absorption and scattering occur in this process. Suppose that

the light reflection rate is ρc�x�. In accordance with the
Koschmieder model [21], the scene image I c�x� formed at
the camera can be formulated as

I c�x� � ��Ec
A�x� · N rer�c�D�x� � Ec

L�x� · N rer�c�d �x�� · ρc�x��
× T c�x� � �1 − T c�x��Ac; c ∈ fr; g; bg; (3)

where the inhomogeneous background Ac represents the am-
bient light and T c�x� is the transmission map.

Equation (3) incorporates the light scattered during propa-
gation from the object to the camera through a distance d�x�
and a scene depth D�x�. Once the scene depth D�x�, homo-
geneous background Ac , and object–camera distance d �x� are
known, a clean image can be recovered.

As indicated in Eq. (3), we suppose the light Jc�x� reflected
from point x is

Jc�x� � �Ec
A�x� · N rer�c�D�x� � Ec

L�x� · N rer�c�d �x�� · ρc�x�
c ∈ fr; g; bg: (4)

Then, Eq. (3) can be rewritten as

I c�x� � Jc�x�T c�x� � �1 − T c�x��Ac; c ∈ fr; g; bg: (5)

The underwater image formation model in Eq. (5) takes
into consideration the scattering effect, attenuation, and artifi-
cial lighting. Thus, we consider taking the UMDCP to remove
the scattering. Meanwhile, we also consider the use of spectral
characteristics to recover the underwater scene color. Figure 1
shows a schematic of the proposed model. To improve the
image quality, we consider the processing flowchart shown
in Fig. 2. In Fig. 2, we first adjust the white balance and apply
a bilateral filtering-based deflicker filter. Next, we estimate the
ambient light using color lines. The coarse transmission is then
estimated by using UMDCP. Then, we use the proposed
locally adaptive cross filter to refine the transmission. Once
the transmission map is obtained, we can remove the scatter.
Finally, we restore the scene color by using the proposed cam-
era spectral characteristic-based color correction algorithm.

3. DESCATTERING AND COLOR CORRECTION

A. Robust Ambient Light Estimation

The ambient light Ac in Eq. (5) is often estimated as the bright-
est color in an image [16,22–24]. However, for underwater
imaging, because artificial lighting and flashing are often used,
some objects (e.g., flickers, highlights) are brighter than the
ambient light [25]. The traditional approaches for estimating
the ambient light may produce undesired results. To reliably

Fig. 1. Schematic of the shallow ocean imaging model.
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estimate the ambient light, Kim et al. [26] proposed a hierar-
chical searching method. This method is based on quadtree
subdivision. For each rectangular region, the minimum dis-
tance between the brightest pixel (255, 255, 255) and the re-
gion is estimated. This method can be used to find the brightest
region in the image. However, it may also produce undesired
results if the brightest pixels are objects. Fattal [27] proposed a
global regularity approach based on color lines. However, in
several cases, if the image contains a single surface albedo or
rich details, this method results in color shifts.

To solve these problems, we propose a robust ambient light
estimation method. First, we remove the highlighted regions
by applying a bilateral filter-based deflicker filter. Unlike the
highlight removed in [28] from specular highlights in natural
scenes, the highlights we removed are with consideration for
light compensation.

We first transferred the input image to SUV space. The S
channel encodes the entire specular component and a fraction
of the diffuse component. As the U and V channels are

functions of only the diffuse reflectance and are independent
of objects, the SUV matrix is converted to a linear matrix.
The color distance ρ is defined as

ρ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I cU �x��2 � �I cV �x��2

q
: (6)

The angle θ can be obtained with I cU �x� and I cV �x�.
According to the component I cS�x� and the color distance ρ,
we can remove the spatial coordinate φ. Then, we take the
diffusion operation as

φ 0 � max�max�φ�� � BF�max�max�φ��; θ∕max�max�θ���;
(7)

where BF represents the bilateral filter [29]. Finally, we can
calculate the ambient light Ac using the image with highlights
removed, as in [27].

B. Coarse Transmission Estimation

According to [23], the red channel is the dark channel of under-
water images. In our experiments, we found that the lowest
pixel value of the RGB channels in turbid water is not always
the red channel, but is occasionally the blue channel. Although
the light of red wavelength is absorbed easily when it propagates
in water, the distance between the camera and object is not
sufficient for light of red wavelength to be significantly ab-
sorbed (Fig. 3). Additionally, the blue channel is absorbed the
least. Consequently, in this paper, we use a dual channel (red
and blue) to estimate the coarse transmission map.

The median filter was first proposed by Tarel and Hautiere
[30] and was used for natural image dehazing. In [24], its use
was extended to underwater imaging.

As previously mentioned, we found that turbid underwater
images exhibited a mostly dark image d̃�x�. The median oper-
ation is suitable for reducing the halo effect when estimating
the coarse transmission. Thus, the underwater median dark
channel priors can be defined by

d̃�x� � median
R�m;n�

�
min
c∈fr;bg

I c�x�
Ac

�
; c ∈ fr; bg; (8)

whereR is a square window of size 5 × 5. For each pixel located
at position �m; n� in the square patchR, the values from the red
and blue channels are compared, and the lower value is selected.
The proposed method can prevent the halo effect around
occlusion boundaries. Accordingly, the coarse estimate of trans-
mission is obtained using

Fig. 2. Summary of the proposed approach for underwater image
enhancement.

Fig. 3. RGB histogram of an underwater image.
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d�x� � 1 − ωd̃ �x�; (9)

where ω � 0.9 for most scenes.

C. Locally Adaptive Cross Filter-Based Descattering

We roughly estimated the coarse transmission d �x� in Section
B. However, its transmission contains mosaic effects and yields
less accurate results. Therefore, we have developed a locally
adaptive cross filter to reduce the mosaic effects.

The use of a median filter has been considered an effective
method for removing outliers. However, the traditional median
filter usually results in morphological artifacts, such as rounded
corners. To solve this problem, a weighted median filter has
been proposed [31,32]. The weighted median filter can be
computed from the local histograms h�x; ·� by

h�x; i� �
X

y∈N �x�
W �x; y�δ�V �y� − i�; (10)

whereW �·� corresponds to the weight assigned to pixel y inside
a local window N �x� centered at the corresponding pixel x, i is
the discrete bin index (usually i � 16), and δ is the Kronecker
delta function. The weight W �x; y� depends on the image x,
which can differ from the pixel value V . Consider it to be in-
stead x by coarse transmission d �x�; y is the white-balanced
image I cB�x�. Finally, the refined transmission is produced by

h�d �x�; i� �
X

x∈N �x�
W �d�x�; I cB�x��δ�V �I cB�x�� − i�; (11)

where W �·� is the normalized convolution domain filter
(NCDF) [33]. For the uniform discretization D�Ω� of the
original domain Ω, NCDF can be written as

W �x 0� � �1∕K x 0 �
X

x∈D�Ω�
d �x�H �t�d�x̂ 0��; t�I cB�x̂���; (12)

where K x 0 � P
x∈D�Ω�H �t�d �x̂ 0��; t�I cB�x̂��� is a normaliza-

tion factor for x 0, and t�· 0� � ct�·�. t represents the isometric
transform, and ct�·� is a domain transform [33]. Using the
efficient moving average approach to apply normalized convo-
lution with a box filter, the box kernel is

H �t�d �x̂ 0��; t�I cB�x̂��� � δBfjt�d �x̂ 0�� − t�I cB�x̂��j ≤ rg;
(13)

where r � σH
ffiffiffi
3

p
is the filter radius, δB is a Boolean function

that equals 1 when its argument is true and 0 otherwise, and σH
is the standard deviation of the coarse transmission map.

Finally, once the transmission d�x� is known in Eq. (11),
the transmission map T c�x� is dependent on the extinction co-
efficient β of the medium as

T c�x� � e−βd �x�: (14)

The descattered image Jc�x� can be obtained by Eq. (5),

Jc�x� � I c�x� − �1 − T c�x��Ac

maxfT c�x�; εg ; (15)

where the definition ε � 0.001 is given to prevent division
by 0.

D. Absorption Compensation

In Section C, we obtained the transmission map T λ�x� and the
descattered image Jc�x�. To remove absorption effects, we must

obtain the reflectivity ρc�x�. For this, we take the least squares
solution,

ρc�x� � �Jc�x�T · Jc�x��−1 · Jc�x�T

· �Ec
A�x� · N rer�c�D�x� � Ec

I �x� · N rer�c�d �x��: (16)

After removing the effects of ambient light and increasing
the distance d�x� between the object and the camera, the scat-
tering can be removed by subtracting the artificial light term in
Eq. (4), since our goal is to obtain Ec

A�x� · N rer�c�D�x� in
Eq. (4). In actual imaging, we can obtain the depth D�x� using
a pressure sensor. Thus, we can recover the absorption recov-
ered image using Eq. (3).

E. Color Correction

A simple color correction method was proposed in [23]. In
practice, the spectral response function of a camera also affects
the colors. In this paper, we use the chromatic transfer function
τλ to measure the light from the surface to a given object
depth as

τλ �
ES
λ

EU
λ

; (17)

where the transfer function τλ at wavelength λ is derived from
the irradiance of the surface Es

λ using the irradiance of the
underwater object EU

λ . On the basis of the spectral response
of the RGB camera, we convert the transfer function to the
RGB domain as

τRGB �
Z

750 nm

λ�400 nm

τλ · Sc�λ�; c ∈ fr; g; bg; (18)

where τRGB is the weighted RGB transfer function and Sc�λ� is
the continuous underwater spectral characteristic function for
color band c. Suppose the nonabsorption image is Ĉ�x� �
Ec
A�x� · N rer�c�D�x�. Finally, the corrected image is obtained

from the weighted RGB transfer function using

C�x� � Ĉ�x� · τRGB; (19)

where C�x� is the color-corrected image.

4. EXPERIMENTAL RESULTS

Thirty underwater images were selected, including 15 images
from the Internet and 15 images from our water tank experi-
ments. The water tank contains 180 L water (90 cm × 45 cm×
45 cm). Both the underwater lights (INON LEs) and the
underwater camera (OLYMPUS μTough TG2) were placed
in the water. The objects were placed 30 cm deep. The distance
between the objects and the camera was approximately 60 cm.
We executed the proposed algorithm on the selected images.
The performance of the proposed algorithm is evaluated both
analytically and experimentally by using ground truths. We also
compare the proposed method with other currently proposed
state-of-the-art methods. The results demonstrate that the
proposed method shows superior scatter removal and color cor-
rection capabilities.

As the first evaluation, the performance of the proposed
method is compared with other methods in terms of the ability
to remove scatter in water. Figure 4 illustrates the results of
descattering an example image using different methods. The

Research Article Vol. 32, No. 5 / May 2015 / Journal of the Optical Society of America A 889



method proposed by He et al. [22] produces a result compa-
rable to our proposed method in regions with heavy scatter.
However, the use of Laplacian matting to overcome increases
in depth is time consuming. Furthermore, in this method, the
ambient light is simply calculated as 0.1% of the brightness of
the brightest pixels, which led the resulting images to contain
some hazes.

The method proposed by Tarel and Hautiere [30] is a filter-
based approach that estimates the veil by applying a median fil-
ter. The merit of this method is its linear complexity, which can
be implemented in real time. However, it also tends to under-
estimate the transmission and produce an oversaturated result.

The double Wiener filtering-based approach proposed by
Gibson et al. [24] can automatically refine the transmission
using a locally adaptive Wiener filter. This method can
also be implemented in real time. However, it estimates the
ambient light using a dark channel prior, which may produce

an undesirable result. The resulting image also contains some
scatter and color shifts.

Fattal [27] proposed the color line-based method can better
estimate the ambient light. However, several cases show that
overestimated ambient light will cause color shifts. Because
of incorrectly estimating the ambient light, the result in
Fig. 4(e) is the darkest. As illustrated in the zoomed-in resulting
images shown in Figs. 4(g)–4(k), the proposed method dem-
onstrates the best performance of all the methods. Less scatter
and fewer halos remain when using the proposed method.
Moreover, the proposed method tends to more clearly represent
object details. The methods proposed by He et al. and
Tarel et al. do not correctly estimate the transmission; the
method proposed by Fattal et al. overestimates the transmis-
sion; and the method proposed by Gibson et al. method causes
transmission jumps. As shown in Figs. 4(l)–4(p), our transmis-
sion is much clearer than those of the other methods.

Fig. 4. Comparison of the presently proposed method with methods proposed by He et al., Tarel et al., Gibson et al., and Fattal et al. (a) Input
image. (b)–(f) Results of methods by He et al., Tarel et al., Gibson et al., and Fattal et al.; and results of the proposed method. (g)–(k) Zoomed-in
images of results shown in (b)–(f), respectively. (l)–(p) Transmission used in methods depicted in (b)–(f), respectively.

Fig. 5. Comparison of ambient light areas estimated using methods proposed by He et al., Tarel et al., Gibson et al., Fattal et al., and that of the
presently proposed method.
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In Fig. 5, we illustrate the estimated ambient light areas of
the image with different methods. The estimated ambient light
of the methods proposed by He et al., Tarel et al., Fattal et al.,
and Gibson et al. appear unsatisfactory. Some of the objects

(e.g., fish, coral reefs) are estimated to be ambient light. In con-
trast, because our proposed method initially removes the high-
lighting effect, the desired ambient light can be correctly
estimated.

Fig. 6. Toys and cups. (a)–(d) Input images. Results with methods proposed by (e)–(h) He et al., (i)–(l) Tarel et al., (m)–(p) Gibson et al., and
(q)–(t) Fattal et al.; and (u)–(x) with the presently proposed method.
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Figure 6 illustrates the simulation results obtained using the
different methods. In this experiment, we made a linear scale of
eight turbidity steps ranging from clean to heavily scattered by
adding deep sea soil to the seawater (from 0.6 to 100 mg∕L).
Some haze remained in the resulting images using the methods
proposed by He et al. and Gibson et al., while those using the
method proposed by Tarel et al. and Fattal et al. show color
distortion. As shown in Figs. 6(u)–6(x), our method effectively
removes haze and correctly recovers color.

In addition to visual analysis, we conducted a quantitative
analysis, first from a statistical perspective and using the stat-
istical parameters of the images. We calculated the contrast-to-
noise ratio (CNR) [34], peak signal-to-noise ratio (PSNR), and
structural similarity index (SSIM) of images obtained using
each method [35]. The CNR is similar to the signal-to-noise
ratio (SNR) and robust in measuring hazy images. The value
of the CNR [34] is between 0 (worst) and 100 (best). The
SSIM index determines the structural similarity between two
images. The value of SSIM is between 0 (worst) and 1 (best).
Figure 7(a) shows the CNR values of the selected 30 images
obtained using the different methods. The CNR values dem-
onstrate that our method performs better than other methods.
However, in several cases, if the contrast of the objects was

small, a failed result was obtained. Figure 7(b) illustrates the
PSNR values of the different methods using four images with
known ground truths. The PSNR value of Image 1 is lower
because of the heavy illumination, meaning the difference
between the illumination of the objects and the background
is very low. Table 1 lists the measured SSIM values of several
images. These results indicate that our approach works well for
scatter removal.

5. DISCUSSION AND CONCLUSION

In this paper, we have explored and successfully implemented
novel enhancement techniques for underwater optical images.
We proposed a physical underwater dark channel prior. To
correctly estimate the ambient light, we develop a robust color
line-based ambient light estimator. We also introduced a
weighted guided domain filter to compensate for the transmis-
sion. The proposed filter has the benefits of preserving edges,
removing noise, and reducing computation time. Moreover,
the proposed underwater image color correction method
successfully reconstructed colorful underwater images that are
better than the images produced using current state-of-the-art
methods. Our experiments showed that the proposed methods
are suitable for underwater optical imaging.

In our experiments, we found that, as the amount of
turbidity sediment increases, image contrast decreases. This
may result in the inability to accurately estimate ambient light.
Another issue is that the proposed method can only remove
haze-like scatter. In future work, we need to design novel algo-
rithms for large particles scatter removal.
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