Observing the Ocean and Earth with

Observing the oceans and Earth with submarine cables: Looking towards the future

Bruce M. Howe JTF SMART Cables Initiative International Programme Office University Hawai'i at Mānoa Future prospects for scientific uses of submarine cables and related technologies -7th session (SSC24) Tokyo, Japan 5 December 2024

Scientific Monitoring And Reliable Telecommunications

Who we are, our mandate

....a global initiative, uniting 300 volunteers and stakeholders from science and society, engineering, data management, business development, and legal and regulatory disciplines...

Earthquakes and Tsunamis

Climate Change, ocean heat, circulation and sea level rise

United Nations effort uniting science with the telecom industry to observe the oceans and Earth

SMART CABLES

JTF Sponsors

- JTF Secretariat
- Resolutions on climate change Disaster Risk Reduction (DDR) includes SMART
- Recommendations SG15/Q8
 G.dsssc/9730.1 and G.SMART/9730.2

 Integrates SMART into WMO Information platform

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

- Global Ocean Observing System (GOOS)
- Tsunami Programme

13 CLIMATE ACTION

AND COMMUNITIES

• UN Ocean Decade: endorsed Project

14 LIFE BELOW WATER

Emerging Observing Network of GOOS

UN World Conference on Disaster Risk Reduction 2015 Sendai Japan

Manual on the WMO Information System Volume II – WMO Information System 2.0 Annex VII to the WMO Technical Regulations

2023 edition

ATHER CLIMATE WAI

WORLD METEOROLOGICAL ORGANIZATION

WMO-No 106

Climate Change and Disaster Risk Reduction

Global Array for Climate, Oceans, Sea Level, Earthquakes, Tsunamis

Create a Planetary sensor, power, Internet network

1st order addition to Ocean-Earth observing system

CABLES

2021 United Nations Decade of Ocean Science for Sustainable Develor

InSea Wet Demo 2023

SMART Atlantic CAM and Tamtam V-NC Funded, install 2026

Know the environment protect the network

Submarine Cable
 w/ SMART repeater

Bottom temperature, pressure, seismic motion

1990 2000 2010 2020

Share submarine cable infrastructure Telecom + science €\$ NO Interference

> 1.4+ GM ~20,000 repeaters 20 year refresh

repeaters ~100 km

SMART Ocean + Climate change – Long term Observation

SMART Cables measure Essential Ocean Variables: Temperature, Pressure; Seismic motion + ...

Shared Cable Infrastructure: Telecom + Science

Existing Technology

Sensor module INGV InSea Wet Demo

Leverage Existing Technology

Sensors:

- Temperature
- Pressure
- Seismic

Key point:

• Essential Ocean Variables

S-net

Climate Change solution (SMART* technology)

ASN, the key partner for undersea data acquisition With scientific sensors

ASN solution based on CC-Nodes

New generation of submarine networks integrating sensors for Climate Change observation dual use (telecom + CC) & dedicated CC systems

CC-NODE

temperature | accelerometer pressure | specific sensors

ASN, part of the Ocean Decade "Science we need for the ocean we want"

* Scientific Monitoring And Reliable Telecommunications

021 United Nations Decade of Ocean Science 030 for Sustainable Development Key applications

Risk monitoring

- Earthquake detection
- Tracking of tsunami wave
- 📕 Tsunami warning

Scientific observation

- **#** Sea bottom movements
- **8** Sea level rise
- **#** Slow drift of sea bottom temperatures
- **#** Sea water currents by temperature
 - & pressure combination

First SMART projects planned for 2025 / 2026

South PacificAtlanticAsia

Separate modules: + Variable spacing

+ More flexible sensors

٨N

-**†**\$/unit

• ~= 2 Tsunami buoys, 25 year (unreliable,

no seismic, not real time)

CABLES

Optical Fiber Sensing in both

Leverage \$5B/y industry, 170 y

Complementary not Competition

- 1. Measurement characteristics can differ in complementary ways
- 2. SMART sensors can calibrate fibre sensing observations
- 3. Validate unexpected observation

CAM and Tamtam:

Ideal for investigating capabilities and complementarity

Systems in Play

2 module test system Labuan Bajo

Atlantic Meridional Overturning Circulation (AMOC)

- Warm upper-ocean water flowing northward
- Cold deep water flowing southward

OSNAP: Overturning in the Subpolar North Atlantic Program

- Redistributes heat, freshwater, oxygen, carbon, and nutrients on a global scale
- Very important for the global climate and marine ecosystem

Cf. Tusass

Courtesy Y. Fu, Georgia Tech

Monitoring the deep ocean - Antarctic Bottom Water

Temperature Range: 0.9 –1.71 °C Salinity Range: 34.64 – 34.72

Courtesy J. Vitorino, Instituto Hidrográfico

JTF SMART Cables – positive attributes:

- Improve Global Ocean Observing System with new EOV long-term, deep data
- Improve the understanding of ocean currents, heat content and sea level rise for climate change
- Improve earthquake and tsunami early warning
- Improve cable protection and integrity no longer "deaf, dumb and blind"
- SMART is multi-disciplinary, multi-purpose, at modest cost
- Catalyse research and development, long-life infrastructure for ocean obs
- Address Science, Technical, Finance, Data, Legal and Regulatory, Security

Global Array: Climate, Oceans, Sea Level, Earthquakes, Tsunamis

- Marriage of science with telecom
- One part of the global environmental monitoring system
- Greater understanding of our planet undeniable humanitarian benefits
- Leverage annual investment of ~ \$ 5 B/y, and ~1.4 M km cable investment by 2037
- Challenges remain first systems setting positive precedents

Biased by my Background

Change gears

SMART \rightarrow SMART+

Howe - Personal perspectives

Moored profiler Inductive power dock Cable connected

Acoustic Thermometry of Ocean Climate (ATOC)

Mobile

SeaGliders acoustic comms and nav

Fixed - cable

001

ALOHA Cabled Observatory Deepest plug and play NEPTUNE, power, Internet node on planet

SMART → SMART+

- Submarine cables have always been critical subsea infrastructure
- Telecom connecting society and empires
- Now understand must protect this critical subsea infrastructure
- Leverage industry, here beyond SMART
- New Capabilities (foundation commercial telecom):
 - dedicated science systems, flexible, high power, bandwidth, reach
 - SMART, acoustic modems, oil and gas, ...
 - AUVs, long range acoustics, ...
 - "Future Proof" flexible to accommodate new tech

Essential Deep Ocean Infrastructure

Infrastructure Services

- POWER
- EVERYTHING depends on POWER –
- POWER enables all:
 - Communications
 - PNT position, navigation, timing
 - + Sensing, ...

Infrastructure elements

- Cables
- Fixed platforms
 - bottom packages, moorings
- Mobile platforms + spatial footprint
 - AUVs, crawlers, ...

?90% ocean observing cost is infrastructure

Cable sine qua non for everything else – share with telecom - affordable

Deep ocean essential infrastructure elements - cables

ASN DC/FO Network – "Nodes" – main application Oil and Gas Need to integrate with commercial telecom

https://www.asn.com/energy-solutions/

Evolved from NEPTUNE Canada

Cabled Instrumentation and Resident AUVs

Courtesy D. Manalang, APL-UW

Bottom packages, upper ocean profilers, deep moored profilers – exist, but bespoke Resident AUVs – one-offs (Saab ...) – no standards New UW connector

NiobiCon[™] Wet-Mate Electrical Connector Niobium, Passivates in ms, 80 V max , 10 A now

Docking – One example For Persistent Operations

Omni-directional, compliant vertical line dock

Niobicon sliding contact power transfer: Patent pending with Northrop Grumman; 500 Watts (48v @ 11 amps)

1+ Mbps data transfer, plus acoustic modem backup

Web-based dock control interface with live video Input

power: Solar, wind, wave, cable, battery

Solar for 1 LRAUV

Homing to Dock MBARI

AUV Parked on Dock

Note: A review of underwater docking and charging technology for autonomous vehicles, Jixin Liu et al., 2024

Acoustic tomography and navigation

Hydrophones on Mermaids/EarthScope Oceans and Seatrec infiniTE[™] Float ASN – integrating acoustic modems

North Pacific

- Kauai Beacon, ONR
- Transmitting regular 2% duty cycle
- RX on OOI, MARS, CTBT/Wake, ACO
- Gemba et al. NPS, UW, UH, ...

Ocean Temperature at the speed of sound

Trans-Arctic

Dzieciuch et al.

Need deep

ocean mooring

Persistent Mobile Ocean Observing: Marine Vehicle Highways Dana Manalang¹, William Wilcock¹, Kendra Daly² ¹University of Washington, ²University of South Florida

The National E Academies of A

SCIENCES ENGINEERING MEDICINE

Marine Vehicle Highways (MVH):

- Global infrastructure for Ocean and Planetary Health Monitoring by a fleet of marine vehicles compatible with standard interface
- Observe difficult-to-predict transient events that drive ocean processes not accessible to fixed instrumentation
- Opportunity for global partnerships and open to any vehicle developer

Docking still in infancy Needs standards Include mid-ocean a la EV charging stations On telecom cables - BH

 ✓ Exponential decrease in cost per measurement
 ✓ Exponential increase in AUV operations
 ✓ Testable on smaller scales

MVH route – arrays of service stations

Vehicle maintenance site

1. Start with telecom network – 1.5 Gm, 20,000 repeaters, every ~70 km

2. In existing and new systems, SMART optical fiber sensing (DAS, SoP, phase)

3. In new systems, SMART nodes: temperature, pressure, seismic motion

4. Include hydrophones – Passive Acoustic Monitoring, soundscapes

5. Single ports at select nodes – acoustic modem, more basic sensors

6. Branch nodes: AUV docking, acoustic moorings, instrument arrays

7. Mesh SMART subsea power grid

8. Add mobile platforms with sensors

9. Acoustics – tomography, sound speed, temperature, heat content

10. Acoustics – long range nav + comms for autonomous platforms

SMART and SMART+

SMART and SMART+ are within reach in the coming Decade, ...

- SMART early systems now underway will set valuable precedents
- Deep ocean largely unknown, essential for science, need protection
- Needed elements
 - Test beds and long duration demos
 - AUVs multi-purpose, with docking (all sizes); Cabled Connected Moorings
 - Acoustic moorings (TX, RX), PNT Smart Subsea Power Grid
 - Model/data assimilation ALL data, bottom boundary layer, fluxes C(**x**,t)
 - Sensors 25-year life, low drift, ...
- Incentivize industry, capacity building, sustainable Blue Economy
- Prepare, implement SMART, SMART+ projects ...
- Achievable with international collaboration

A long way since SSC1990 in Honolulu!

SMARTCables.org

ITU/WMO/UNESCO IOC Joint Task Force

Scan to Join!

Danke Gracias ありがとう — Arigato Thank you Dhanyavaad Merci Tankyu tumas Arigatō Xièxiè Terima kasih Takk Grazie Mālō 'aupito Kop koon Salamat po S' efharistó